These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18449544)

  • 61. Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance.
    Bordas M; Montesinos C; Dabauza M; Salvador A; Roig LA; Serrano R; Moreno V
    Transgenic Res; 1997 Jan; 6(1):41-50. PubMed ID: 9032977
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.
    Ravanfar SA; Aziz MA; Saud HM; Abdullah JO
    Curr Genet; 2015 Nov; 61(4):653-63. PubMed ID: 25986972
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transgenic plants regenerated from hairy roots of Nicotiana benthamiana: a promising host for transient expression of foreign proteins.
    Sindarovska YR; Gerasymenko IM; Sheludko YV; Komarnytskyy IK; Bannikova MA; Kuchuk NV
    Tsitol Genet; 2005; 39(6):9-14. PubMed ID: 16396315
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Stable transformation of sunflower (Helianthus annuus L.) using a non-meristematic regeneration protocol and green fluorescent protein as a vital marker.
    Müller A; Iser M; Hess D
    Transgenic Res; 2001 Oct; 10(5):435-44. PubMed ID: 11708653
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sunflower (Helianthus annuus L.).
    Lewi DM; Hopp HE; Escandón AS
    Methods Mol Biol; 2006; 343():291-7. PubMed ID: 16988353
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Regeneration of transformed verbena (Verbena x hybrida) by Agrobacterium tumefaciens.
    Tamura M; Togami J; Ishiguro K; Nakamura N; Katsumoto Y; Suzuki K; Kusumi T; Tanaka Y
    Plant Cell Rep; 2003 Jan; 21(5):459-66. PubMed ID: 12789449
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Establishment of regeneration and transformation system in Egyptian sesame (Sesamum indicum L.) cv Sohag 1.
    Al-Shafeay AF; Ibrahim AS; Nesiem MR; Tawfik MS
    GM Crops; 2011; 2(3):182-92. PubMed ID: 22179191
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An efficient transformation system for chickpea (Cicer arietinum L.).
    Senthil G; Williamson B; Dinkins RD; Ramsay G
    Plant Cell Rep; 2004 Nov; 23(5):297-303. PubMed ID: 15455257
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Agrobacterium-mediated transformation and assessment of factors influencing transgene expression in loblolly pine (Pinus taeda L.).
    Tang W
    Cell Res; 2001 Sep; 11(3):237-43. PubMed ID: 11642410
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.).
    Cui C; Song F; Tan Y; Zhou X; Zhao W; Ma F; Liu Y; Hussain J; Wang Y; Yang G; He G
    Acta Biochim Biophys Sin (Shanghai); 2011 Apr; 43(4):284-91. PubMed ID: 21343162
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Horticultural characterization of Angelonia salicariifolia plants transformed with wild-type strains of Agrobacterium rhizogenes.
    Koike Y; Hoshino Y; Mii M; Nakano M
    Plant Cell Rep; 2003 Jun; 21(10):981-7. PubMed ID: 12835908
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.).
    Li D; Zhao K; Xie B; Zhang B; Luo K
    Plant Cell Rep; 2003 Apr; 21(8):785-8. PubMed ID: 12789523
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Agrobacterium tumefaciens-mediated genetic transformation of the cardenolide-producing plant Digitalis minor L.
    Sales E; Segura J; Arrillaga I
    Planta Med; 2003 Feb; 69(2):143-7. PubMed ID: 12624819
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Regeneration and Agrobacterium-mediated transformation of the apomictic species Eulaliopsis binata.
    Ma K; Hu CG; Xu B; Yao JL
    Appl Biochem Biotechnol; 2013 Sep; 171(2):543-52. PubMed ID: 23873641
    [TBL] [Abstract][Full Text] [Related]  

  • 75. ipt Gene transformation in petunia by an Agrobacterium mediated method.
    Bai LJ; Ye CJ; Lu JY; Yang DE; Xue H; Pan Y; Cao PX; Wang B; Liu M
    J Immunoassay Immunochem; 2009; 30(2):224-31. PubMed ID: 19330647
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Opium Poppy (Papaver somniferum).
    Chitty JA; Allen RS; Larkin PJ
    Methods Mol Biol; 2006; 344():383-91. PubMed ID: 17033080
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Development of an Agrobacterium-mediated transformation method for pear (Pyrus communis L.) with leaf-section and axillary shoot-meristem explants.
    Matsuda N; Gao M; Isuzugawa K; Takashina T; Nishimura K
    Plant Cell Rep; 2005 Apr; 24(1):45-51. PubMed ID: 15706454
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants.
    Cardoza V; Stewart CN
    Plant Cell Rep; 2003 Feb; 21(6):599-604. PubMed ID: 12789436
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation.
    Faize M; Faize L; Burgos L
    BMC Biotechnol; 2010 Jul; 10():53. PubMed ID: 20637070
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector.
    Anuradha TS; Jami SK; Datla RS; Kirti PB
    J Biosci; 2006 Jun; 31(2):235-46. PubMed ID: 16809856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.