BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18449565)

  • 1. Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins.
    Müller N; Sattelmacher F; Lugert R; Gross U
    Med Microbiol Immunol; 2008 Dec; 197(4):387-96. PubMed ID: 18449565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and localization of type III secretion-related proteins of Chlamydia pneumoniae.
    Lugert R; Kuhns M; Polch T; Gross U
    Med Microbiol Immunol; 2004 Nov; 193(4):163-71. PubMed ID: 14593477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Type III Secretion System-Related CPn0809 from Chlamydia pneumoniae.
    Engel AC; Herbst F; Kerres A; Galle JN; Hegemann JH
    PLoS One; 2016; 11(2):e0148509. PubMed ID: 26895250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of secreted effector proteins of Chlamydophila pneumoniae TW183.
    Herrmann M; Schuhmacher A; Mühldorfer I; Melchers K; Prothmann C; Dammeier S
    Res Microbiol; 2006; 157(6):513-24. PubMed ID: 16797933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of the hypothetical protein Cpn0585 in the inclusion membrane of Chlamydia pneumoniae-infected cells.
    Luo J; Jia T; Zhong Y; Chen D; Flores R; Zhong G
    Microb Pathog; 2007; 42(2-3):111-6. PubMed ID: 17236746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases.
    Cortes C; Rzomp KA; Tvinnereim A; Scidmore MA; Wizel B
    Infect Immun; 2007 Dec; 75(12):5586-96. PubMed ID: 17908815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effector proteins of Clamidia].
    Kariagina AS; Alekseevskiĭ AV; Spirin SA; Zigangirova NA; Gintsburg AL
    Mol Biol (Mosk); 2009; 43(6):963-83. PubMed ID: 20088373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromanipulation of the Chlamydia pneumoniae inclusion: implications for cloning and host-pathogen interactions.
    Gieffers J; Tamplin V; Maass M; Belland RJ; Caldwell HD
    FEMS Microbiol Lett; 2003 Sep; 226(1):45-9. PubMed ID: 13129606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydophila (Chlamydia) pneumoniae infection of human astrocytes and microglia in culture displays an active, rather than a persistent, phenotype.
    Dreses-Werringloer U; Gérard HC; Whittum-Hudson JA; Hudson AP
    Am J Med Sci; 2006 Oct; 332(4):168-74. PubMed ID: 17031241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Chlamydia pneumoniae candidate genes that interact with human apoptotic factor caspase-9.
    Aziz MA; Ushirokita R; Azuma Y
    J Gen Appl Microbiol; 2018 Nov; 64(5):253-257. PubMed ID: 29760350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the hypothetical protein Cpn1027, a newly identified inclusion membrane protein unique to Chlamydia pneumoniae.
    Flores R; Luo J; Chen D; Sturgeon G; Shivshankar P; Zhong Y; Zhong G
    Microbiology (Reading); 2007 Mar; 153(Pt 3):777-86. PubMed ID: 17322198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol.
    Brown WJ; Skeiky YA; Probst P; Rockey DD
    Infect Immun; 2002 Oct; 70(10):5860-4. PubMed ID: 12228318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of hypothetical proteins Cpn0146, 0147, 0284 & 0285 that are predicted to be in the Chlamydia pneumoniae inclusion membrane.
    Luo J; Liu G; Zhong Y; Jia T; Liu K; Chen D; Zhong G
    BMC Microbiol; 2007 May; 7():38. PubMed ID: 17504539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.
    Bannantine JP; Griffiths RS; Viratyosin W; Brown WJ; Rockey DD
    Cell Microbiol; 2000 Feb; 2(1):35-47. PubMed ID: 11207561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlamydophila pneumoniae PknD exhibits dual amino acid specificity and phosphorylates Cpn0712, a putative type III secretion YscD homolog.
    Johnson DL; Mahony JB
    J Bacteriol; 2007 Nov; 189(21):7549-55. PubMed ID: 17766419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flotillin-1 (Reggie-2) contributes to Chlamydia pneumoniae growth and is associated with bacterial inclusion.
    Korhonen JT; Puolakkainen M; Häivälä R; Penttilä T; Haveri A; Markkula E; Lahesmaa R
    Infect Immun; 2012 Mar; 80(3):1072-8. PubMed ID: 22215737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of genes encoding membrane proteins between acute and continuous Chlamydia pneumoniae infections.
    Hogan RJ; Mathews SA; Kutlin A; Hammerschlag MR; Timms P
    Microb Pathog; 2003 Jan; 34(1):11-6. PubMed ID: 12620380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host cell Golgi anti-apoptotic protein (GAAP) and growth of Chlamydia pneumoniae.
    Markkula E; Hulkkonen J; Penttilä T; Puolakkainen M
    Microb Pathog; 2013 Jan; 54():46-53. PubMed ID: 23000903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Human Centrosomal Protein CCDC146 Binds
    Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ
    Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225
    [No Abstract]   [Full Text] [Related]  

  • 20. Chlamydia pneumoniae CPj0783 interaction with Huntingtin-protein14.
    Yanatori I; Yasui Y; Ouchi K; Kishi F
    Int Microbiol; 2015 Dec; 18(4):225-33. PubMed ID: 27611675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.