These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 18450002)

  • 1. Application of machine learning techniques in predicting MHC binders.
    Lata S; Bhasin M; Raghava GP
    Methods Mol Biol; 2007; 409():201-15. PubMed ID: 18450002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties.
    Cui J; Han LY; Lin HH; Zhang HL; Tang ZQ; Zheng CJ; Cao ZW; Chen YZ
    Mol Immunol; 2007 Feb; 44(5):866-77. PubMed ID: 16806474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes.
    Bhasin M; Raghava GP
    J Biosci; 2007 Jan; 32(1):31-42. PubMed ID: 17426378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of CTL epitopes using QM, SVM and ANN techniques.
    Bhasin M; Raghava GP
    Vaccine; 2004 Aug; 22(23-24):3195-204. PubMed ID: 15297074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence.
    Bhasin M; Raghava GP
    Bioinformatics; 2004 Feb; 20(3):421-3. PubMed ID: 14960470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Support vector machine-based prediction of MHC-binding peptides.
    Dönnes P
    Methods Mol Biol; 2007; 409():273-82. PubMed ID: 18450007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial intelligence methods for predicting T-cell epitopes.
    Zhao Y; Sung MH; Simon R
    Methods Mol Biol; 2007; 409():217-25. PubMed ID: 18450003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of peptide-MHC binding using profiles.
    Reche PA; Reinherz EL
    Methods Mol Biol; 2007; 409():185-200. PubMed ID: 18450001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing the modular MHC model for predicting peptide binding.
    DeLuca DS; Blasczyk R
    Methods Mol Biol; 2007; 409():261-71. PubMed ID: 18450006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method.
    He J; Yang G; Rao H; Li Z; Ding X; Chen Y
    Artif Intell Med; 2012 Jun; 55(2):107-15. PubMed ID: 22134095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of promiscuous and high-affinity mutated MHC binders.
    Bhasin M; Raghava GP
    Hybrid Hybridomics; 2003 Aug; 22(4):229-34. PubMed ID: 14511568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear predictive modeling of MHC class II-peptide binding using Bayesian neural networks.
    Winkler DA; Burden FR
    Methods Mol Biol; 2007; 409():365-77. PubMed ID: 18450015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient peptide-MHC-I binding prediction for alleles with few known binders.
    Jacob L; Vert JP
    Bioinformatics; 2008 Feb; 24(3):358-66. PubMed ID: 18083718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TAPPred prediction of TAP-binding peptides in antigens.
    Bhasin M; Lata S; Raghava GP
    Methods Mol Biol; 2007; 409():381-6. PubMed ID: 18450016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Definition of MHC supertypes through clustering of MHC peptide-binding repertoires.
    Reche PA; Reinherz EL
    Methods Mol Biol; 2007; 409():163-73. PubMed ID: 18449999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy.
    Kumar N; Mohanty D
    Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.