These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 18450003)

  • 1. Artificial intelligence methods for predicting T-cell epitopes.
    Zhao Y; Sung MH; Simon R
    Methods Mol Biol; 2007; 409():217-25. PubMed ID: 18450003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of machine learning techniques in predicting MHC binders.
    Lata S; Bhasin M; Raghava GP
    Methods Mol Biol; 2007; 409():201-15. PubMed ID: 18450002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building MHC class II epitope predictor using machine learning approaches.
    Eng LP; Tan TW; Tong JC
    Methods Mol Biol; 2015; 1268():67-73. PubMed ID: 25555721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear predictive modeling of MHC class II-peptide binding using Bayesian neural networks.
    Winkler DA; Burden FR
    Methods Mol Biol; 2007; 409():365-77. PubMed ID: 18450015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T cell responses to bluetongue virus are directed against multiple and identical CD4+ and CD8+ T cell epitopes from the VP7 core protein in mouse and sheep.
    Rojas JM; Rodríguez-Calvo T; Peña L; Sevilla N
    Vaccine; 2011 Sep; 29(40):6848-57. PubMed ID: 21807057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of peptide-MHC binding using profiles.
    Reche PA; Reinherz EL
    Methods Mol Biol; 2007; 409():185-200. PubMed ID: 18450001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TAPPred prediction of TAP-binding peptides in antigens.
    Bhasin M; Lata S; Raghava GP
    Methods Mol Biol; 2007; 409():381-6. PubMed ID: 18450016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative prediction of MHC-II binding affinity using particle swarm optimization.
    Zhang W; Liu J; Niu Y
    Artif Intell Med; 2010 Oct; 50(2):127-32. PubMed ID: 20541921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of specific CD4 and CD8 T cell epitopes after AAV2- and AAV8-hF.IX gene therapy.
    Chen J; Wu Q; Yang P; Hsu HC; Mountz JD
    Mol Ther; 2006 Feb; 13(2):260-9. PubMed ID: 16324888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static energy analysis of MHC class I and class II peptide-binding affinity.
    Davies MN; Flower DR
    Methods Mol Biol; 2007; 409():309-20. PubMed ID: 18450011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Support vector machine-based prediction of MHC-binding peptides.
    Dönnes P
    Methods Mol Biol; 2007; 409():273-82. PubMed ID: 18450007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method.
    He J; Yang G; Rao H; Li Z; Ding X; Chen Y
    Artif Intell Med; 2012 Jun; 55(2):107-15. PubMed ID: 22134095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting class I major histocompatibility complex (MHC) binders using multivariate statistics: comparison of discriminant analysis and multiple linear regression.
    Doytchinova IA; Flower DR
    J Chem Inf Model; 2007; 47(1):234-8. PubMed ID: 17238269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational methods for prediction of T-cell epitopes--a framework for modelling, testing, and applications.
    Brusic V; Bajic VB; Petrovsky N
    Methods; 2004 Dec; 34(4):436-43. PubMed ID: 15542369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting peptide binding to Major Histocompatibility Complex molecules.
    Liao WW; Arthur JW
    Autoimmun Rev; 2011 Jun; 10(8):469-73. PubMed ID: 21333759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of CTL epitopes using QM, SVM and ANN techniques.
    Bhasin M; Raghava GP
    Vaccine; 2004 Aug; 22(23-24):3195-204. PubMed ID: 15297074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing immunodominant and protective influenza hemagglutinin epitopes by functional activity and relative binding to major histocompatibility complex class II sites.
    Rajnavölgyi E; Horváth A; Gogolák P; Tóth GK; Fazekas G; Fridkin M; Pecht I
    Eur J Immunol; 1997 Dec; 27(12):3105-14. PubMed ID: 9464794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two T cell epitopes from the M5 protein of viable Streptococcus pyogenes engage different pathways of bacterial antigen processing in mouse macrophages.
    Delvig AA; Robinson JH
    J Immunol; 1998 Jun; 160(11):5267-72. PubMed ID: 9605123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.