These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 18450363)

  • 1. Estimating acoustic peak pressure generated by ultrasound transducers from harmonic distortion level measurement.
    Matte GM; Borsboom JM; van Neer P; de Jong N
    Ultrasound Med Biol; 2008 Sep; 34(9):1528-32. PubMed ID: 18450363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer functions of US transducers for harmonic imaging and bubble responses.
    van Neer PL; Matte G; Sijl J; Borsboom JM; de Jong N
    Ultrasonics; 2007 Nov; 46(4):336-40. PubMed ID: 17631929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reflector-based phase calibration of ultrasound transducers.
    van Neer PL; Vos HJ; de Jong N
    Ultrasonics; 2011 Jan; 51(1):1-6. PubMed ID: 20537364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of impulse response of rectangular ultrasound transducer].
    Bu F; Cao P; Cheng J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):425-8. PubMed ID: 11211831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrasonic device for source to skin surface distance measurement in patient setup.
    Feng Y; Allison R; Hu XH; Mota H; Jenkins T; Wolfe ML; Sibata C
    Int J Radiat Oncol Biol Phys; 2005 Apr; 61(5):1587-9. PubMed ID: 15817366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaussian representation of high-intensity focused ultrasound beams.
    Soneson JE; Myers MR
    J Acoust Soc Am; 2007 Nov; 122(5):2526-31. PubMed ID: 18189543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields.
    Haller J; Wilkens V; Jenderka KV; Koch C
    J Acoust Soc Am; 2011 Jun; 129(6):3676-81. PubMed ID: 21682392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A harmonic cancellation technique for an ultrasound transducer excited by a switched-mode power converter.
    Tang SC; Clement GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):359-67. PubMed ID: 18334342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
    Rosnitskiy PB; Yuldashev PV; Sapozhnikov OA; Maxwell AD; Kreider W; Bailey MR; Khokhlova VA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):374-390. PubMed ID: 27775904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-demodulation of high-frequency ultrasound.
    Vos HJ; Goertz DE; de Jong N
    J Acoust Soc Am; 2010 Mar; 127(3):1208-17. PubMed ID: 20329819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.
    Morris P; Hurrell A; Shaw A; Zhang E; Beard P
    J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II.
    Bæk D; Jensen JA; Willatzen M
    J Acoust Soc Am; 2010 May; 127(5):2825-35. PubMed ID: 21117733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glass-windowed ultrasound transducers.
    Yddal T; Gilja OH; Cochran S; Postema M; Kotopoulis S
    Ultrasonics; 2016 May; 68():108-19. PubMed ID: 26938326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of acoustic pressure on ambient pressure estimation using ultrasound contrast agent.
    Andersen KS; Jensen JA
    Ultrasonics; 2010 Feb; 50(2):294-9. PubMed ID: 19822339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct methods for characterizing high-intensity focused ultrasound transducers using acoustic streaming.
    Myers MR; Hariharan P; Banerjee RK
    J Acoust Soc Am; 2008 Sep; 124(3):1790-802. PubMed ID: 19045669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of high intensity focused ultrasound transducers using acoustic streaming.
    Hariharan P; Myers MR; Robinson RA; Maruvada SH; Sliwa J; Banerjee RK
    J Acoust Soc Am; 2008 Mar; 123(3):1706-19. PubMed ID: 18345858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of acoustic intensity in the focused ultrasound field using hydrophone and infrared imaging.
    Yu Y; Shen G; Zhou Y; Bai J; Chen Y
    Ultrasound Med Biol; 2013 Nov; 39(11):2021-33. PubMed ID: 23972377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.
    Maraghechi B; Hasani MH; Kolios MC; Tavakkoli J
    J Acoust Soc Am; 2016 May; 139(5):2475. PubMed ID: 27250143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods.
    Civale J; Rivens I; Shaw A; Ter Haar G
    Phys Med Biol; 2018 Mar; 63(5):055015. PubMed ID: 29437152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a novel solid-state method for determining the acoustic power generated by physiotherapy ultrasound transducers.
    Zeqiri B; Barrie J
    Ultrasound Med Biol; 2008 Sep; 34(9):1513-27. PubMed ID: 18440695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.