BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18450366)

  • 1. Modulation of calcium signals by fluorescent dyes in the presence of tubular endoplasmic reticulum: a modelling approach.
    Baran I
    Biosystems; 2008 Jun; 92(3):259-69. PubMed ID: 18450366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of local calcium signals in tubular networks of endoplasmic reticulum.
    Baran I
    Cell Calcium; 2007 Sep; 42(3):245-60. PubMed ID: 17240446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution.
    Shuai J; Parker I
    Cell Calcium; 2005 Apr; 37(4):283-99. PubMed ID: 15755490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rearrangement of the endoplasmic reticulum and calcium transient formation: the computational approach.
    Pomorski P; Targos B; BaraƄska J
    Biochem Biophys Res Commun; 2005 Mar; 328(4):1126-32. PubMed ID: 15707994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of calcium changes in endoplasmic reticulum during apoptosis by the fluorescent indicator chlortetracycline.
    Cerella C; Mearelli C; De Nicola M; D'Alessio M; Magrini A; Bergamaschi A; Ghibelli L
    Ann N Y Acad Sci; 2007 Mar; 1099():490-3. PubMed ID: 17446492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model-based method for estimating Ca2+ release fluxes from linescan images in Xenopus oocytes.
    Baran I; Popescu A
    Chaos; 2009 Sep; 19(3):037106. PubMed ID: 19792031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorin p6 preferentially localizes in endoplasmic reticulum and Golgi apparatus and inhibits Ca(2+) release from intracellular store.
    Begum G; Dube A; Joshi PG; Gupta PK; Joshi NB
    J Photochem Photobiol B; 2009 Jun; 95(3):177-84. PubMed ID: 19356945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure-based Monte Carlo simulation of Ca2+ dynamics evoking cardiac calcium channel inactivation.
    Kawazu T; Murakami S; Adachi-Akahane S; Findlay I; Ait-Haddou R; Kurachi Y; Nomura T
    J Physiol Sci; 2008 Dec; 58(7):471-80. PubMed ID: 18928642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proton-led model of fast calcium waves.
    Jaffe LF
    Cell Calcium; 2004 Jul; 36(1):83-7. PubMed ID: 15126059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bifurcation analysis of calcium buffering.
    Gin E; Kirk V; Sneyd J
    J Theor Biol; 2006 Sep; 242(1):1-15. PubMed ID: 16519905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic simulation of the effect of calcium-release activated calcium channel on cytoplasmic Ca2+ oscillation.
    Chen XF; Li CX; Wang PY; Li M; Wang WC
    Biophys Chem; 2008 Aug; 136(2-3):87-95. PubMed ID: 18538916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-initiated Ca(2+) signals are reshaped during propagation to subcellular regions.
    Koopman WJ; Scheenen WJ; Errington RJ; Willems PH; Bindels RJ; Roubos EW; Jenks BG
    Biophys J; 2001 Jul; 81(1):57-65. PubMed ID: 11423394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic fluorescence measurements of two-state systems: applications to calcium-chelating probes.
    Hirshfield KM; Toptygin D; Packard BS; Brand L
    Anal Biochem; 1993 Mar; 209(2):209-18. PubMed ID: 8470792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The garlic ingredient diallyl sulfide induces Ca(2+) mobilization in Madin-Darby canine kidney cells.
    Chen CH; Su SJ; Chang KL; Huang MW; Kuo SY
    Food Chem Toxicol; 2009 Sep; 47(9):2344-50. PubMed ID: 19555733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of calcium imaging signals from the honeybee brain by nonlinear models.
    Stetter M; Greve H; Galizia CG; Obermayer K
    Neuroimage; 2001 Jan; 13(1):119-28. PubMed ID: 11133315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Econazole-evoked [Ca2+]i rise and non-Ca2+-triggered cell death in rabbit corneal epithelial cells (SIRC).
    Chien JM; Huang CC; Cheng HH; Lin KL; Chen WC; Tseng PL; Chou CT; Tsai JY; Liao WC; Wang BW; Chang PM; Jan CR
    J Recept Signal Transduct Res; 2008; 28(6):567-79. PubMed ID: 19061074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An easy ratiometric compensation for the extracellular Ca2+ indicator-caused fluorescence artifact.
    Kukkonen JP
    Anal Biochem; 2009 Jul; 390(2):212-4. PubMed ID: 19376081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modelling identifies the impact of subtle anatomical variations between amphibian and mammalian skeletal muscle on spatiotemporal calcium dynamics.
    Groenendaal W; Jeneson JA; Verhoog PJ; van Riel NA; Ten Eikelder HM; Nicolay K; Hilbers PA
    IET Syst Biol; 2008 Nov; 2(6):411-22. PubMed ID: 19045836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. F281, synthetic agonist of the sigma-2 receptor, induces Ca2+ efflux from the endoplasmic reticulum and mitochondria in SK-N-SH cells.
    Cassano G; Gasparre G; Niso M; Contino M; Scalera V; Colabufo NA
    Cell Calcium; 2009 Apr; 45(4):340-5. PubMed ID: 19187959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc ions cause the thimerosal-induced signal of fluorescent calcium probes in lymphocytes.
    Haase H; Hebel S; Engelhardt G; Rink L
    Cell Calcium; 2009 Feb; 45(2):185-91. PubMed ID: 18977527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.