BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18450565)

  • 1. Light response of hydraulic conductance in bur oak (Quercus macrocarpa) leaves.
    Voicu MC; Zwiazek JJ; Tyree MT
    Tree Physiol; 2008 Jul; 28(7):1007-15. PubMed ID: 18450565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitor studies of leaf lamina hydraulic conductance in trembling aspen (Populus tremuloides Michx.) leaves.
    Voicu MC; Zwiazek JJ
    Tree Physiol; 2010 Feb; 30(2):193-204. PubMed ID: 20022867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquaporin gene expression and apoplastic water flow in bur oak (Quercus macrocarpa) leaves in relation to the light response of leaf hydraulic conductance.
    Voicu MC; Cooke JE; Zwiazek JJ
    J Exp Bot; 2009; 60(14):4063-75. PubMed ID: 19651684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydraulic conductivity of red oak (Quercus rubra L.) leaf tissue does not respond to light.
    Rockwell FE; Holbrook NM; Zwieniecki MA
    Plant Cell Environ; 2011 Apr; 34(4):565-79. PubMed ID: 21309791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem.
    Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD
    Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limitation of Cell Elongation in Barley (Hordeum vulgare L.) Leaves Through Mechanical and Tissue-Hydraulic Properties.
    Touati M; Knipfer T; Visnovitz T; Kameli A; Fricke W
    Plant Cell Physiol; 2015 Jul; 56(7):1364-73. PubMed ID: 25907571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic analysis of water flow through leaves of sugar maple and red oak.
    Sack L; Streeter CM; Holbrook NM
    Plant Physiol; 2004 Apr; 134(4):1824-33. PubMed ID: 15064368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods.
    Sack L; Melcher PJ; Zwieniecki MA; Holbrook NM
    J Exp Bot; 2002 Nov; 53(378):2177-84. PubMed ID: 12379784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf functional plasticity decreases the water consumption without further consequences for carbon uptake in Quercus coccifera L. under Mediterranean conditions.
    Peguero-Pina JJ; Sisó S; Fernández-Marín B; Flexas J; Galmés J; García-Plazaola JI; Niinemets Ü; Sancho-Knapik D; Gil-Pelegrín E
    Tree Physiol; 2016 Mar; 36(3):356-67. PubMed ID: 26705310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Sites of Evaporation within Leaves.
    Buckley TN; John GP; Scoffoni C; Sack L
    Plant Physiol; 2017 Mar; 173(3):1763-1782. PubMed ID: 28153921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The competition between liquid and vapor transport in transpiring leaves.
    Rockwell FE; Holbrook NM; Stroock AD
    Plant Physiol; 2014 Apr; 164(4):1741-58. PubMed ID: 24572172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in petiole hydraulic properties and leaf water flow in birch and oak saplings in a CO2-enriched atmosphere.
    Eguchi N; Morii N; Ueda T; Funada R; Takagi K; Hiura T; Sasa K; Koike T
    Tree Physiol; 2008 Feb; 28(2):287-95. PubMed ID: 18055439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods.
    Scoffoni C; Pou A; Aasamaa K; Sack L
    Plant Cell Environ; 2008 Dec; 31(12):1803-12. PubMed ID: 18771574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low air humidity increases leaf-specific hydraulic conductance of Arabidopsis thaliana (L.) Heynh (Brassicaceae).
    Levin M; Lemcoff JH; Cohen S; Kapulnik Y
    J Exp Bot; 2007; 58(13):3711-8. PubMed ID: 17928370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance.
    Trifiló P; Raimondo F; Savi T; Lo Gullo MA; Nardini A
    J Exp Bot; 2016 Sep; 67(17):5029-39. PubMed ID: 27388214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control.
    Guyot G; Scoffoni C; Sack L
    Plant Cell Environ; 2012 May; 35(5):857-71. PubMed ID: 22070647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquaporin Expression and Water Transport Pathways inside Leaves Are Affected by Nitrogen Supply through Transpiration in Rice Plants.
    Ding L; Li Y; Gao L; Lu Z; Wang M; Ling N; Shen Q; Guo S
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29337869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula).
    Sellin A; Ounapuu E; Kupper P
    Physiol Plant; 2008 Nov; 134(3):412-20. PubMed ID: 18513374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak.
    Rodríguez-Calcerrada J; Reich PB; Rosenqvist E; Pardos JA; Cano FJ; Aranda I
    Tree Physiol; 2008 May; 28(5):761-71. PubMed ID: 18316308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.