BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18450578)

  • 1. Genomic and physiological approaches to advancing forest tree improvement.
    Nelson CD; Johnsen KH
    Tree Physiol; 2008 Jul; 28(7):1135-43. PubMed ID: 18450578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation.
    Aspinwall MJ; King JS; McKeand SE; Domec JC
    Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting the sequencing of the first tree genome: Populus trichocarpa.
    Wullschleger SD; Weston DJ; DiFazio SP; Tuskan GA
    Tree Physiol; 2013 Apr; 33(4):357-64. PubMed ID: 23100257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Out of the woods: forest biotechnology enters the genomic era.
    Bhalerao R; Nilsson O; Sandberg G
    Curr Opin Biotechnol; 2003 Apr; 14(2):206-13. PubMed ID: 12732322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.
    Harfouche A; Meilan R; Altman A
    Tree Physiol; 2014 Nov; 34(11):1181-98. PubMed ID: 24695726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [From population genetics to population genomics of forest trees: integrated population genomics approach].
    Krutovskiĭ KV
    Genetika; 2006 Oct; 42(10):1304-18. PubMed ID: 17152702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine.
    Zapata-Valenzuela J; Whetten RW; Neale D; McKeand S; Isik F
    G3 (Bethesda); 2013 May; 3(5):909-16. PubMed ID: 23585458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the loblolly pine (Pinus taeda L.) genome by BAC sequencing and Cot analysis.
    Perera D; Magbanua ZV; Thummasuwan S; Mukherjee D; Arick M; Chouvarine P; Nairn CJ; Schmutz J; Grimwood J; Dean JFD; Peterson DG
    Gene; 2018 Jul; 663():165-177. PubMed ID: 29655895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf traits in relation to crown development, light interception and growth of elite families of loblolly and slash pine.
    Chmura DJ; Tjoelker MG
    Tree Physiol; 2008 May; 28(5):729-42. PubMed ID: 18316305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clonal variation in crown structure, absorbed photosynthetically active radiation and growth of loblolly pine and slash pine.
    Emhart VI; Martin TA; White TL; Huber DA
    Tree Physiol; 2007 Mar; 27(3):421-30. PubMed ID: 17241984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.).
    Lu M; Krutovsky KV; Nelson CD; Koralewski TE; Byram TD; Loopstra CA
    BMC Genomics; 2016 Sep; 17(1):730. PubMed ID: 27624183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae).
    Eckert AJ; Bower AD; González-Martínez SC; Wegrzyn JL; Coop G; Neale DB
    Mol Ecol; 2010 Sep; 19(17):3789-805. PubMed ID: 20723060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential transgenic routes to increase tree biomass.
    Dubouzet JG; Strabala TJ; Wagner A
    Plant Sci; 2013 Nov; 212():72-101. PubMed ID: 24094056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics and the tree physiologist.
    Wullschleger SD; Tuskan GA; DiFazio SP
    Tree Physiol; 2002 Dec; 22(18):1273-6. PubMed ID: 12490424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association genetics in Pinus taeda L. II. Carbon isotope discrimination.
    González-Martínez SC; Huber D; Ersoz E; Davis JM; Neale DB
    Heredity (Edinb); 2008 Jul; 101(1):19-26. PubMed ID: 18478029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A review of the genomic and gene cloning studies in trees].
    Yin TM
    Yi Chuan; 2010 Jul; 32(7):677-84. PubMed ID: 20650848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forest-tree population genomics and adaptive evolution.
    González-Martínez SC; Krutovsky KV; Neale DB
    New Phytol; 2006; 170(2):227-38. PubMed ID: 16608450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies.
    Neale DB; Wegrzyn JL; Stevens KA; Zimin AV; Puiu D; Crepeau MW; Cardeno C; Koriabine M; Holtz-Morris AE; Liechty JD; Martínez-García PJ; Vasquez-Gross HA; Lin BY; Zieve JJ; Dougherty WM; Fuentes-Soriano S; Wu LS; Gilbert D; Marçais G; Roberts M; Holt C; Yandell M; Davis JM; Smith KE; Dean JF; Lorenz WW; Whetten RW; Sederoff R; Wheeler N; McGuire PE; Main D; Loopstra CA; Mockaitis K; deJong PJ; Yorke JA; Salzberg SL; Langley CH
    Genome Biol; 2014 Mar; 15(3):R59. PubMed ID: 24647006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and genomic approaches to assess adaptive genetic variation in plants: forest trees as a model.
    Gailing O; Vornam B; Leinemann L; Finkeldey R
    Physiol Plant; 2009 Dec; 137(4):509-19. PubMed ID: 19627554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative trait loci influencing forking defects in an outbred pedigree of loblolly pine.
    Xiong JS; McKeand SE; Isik F; Wegrzyn J; Neale DB; Zeng ZB; da Costa E Silva L; Whetten RW
    BMC Genet; 2016 Oct; 17(1):138. PubMed ID: 27756221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.