These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18450578)

  • 61. Association genetics of oleoresin flow in loblolly pine: discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential.
    Westbrook JW; Resende MFR; Munoz P; Walker AR; Wegrzyn JL; Nelson CD; Neale DB; Kirst M; Huber DA; Gezan SA; Peter GF; Davis JM
    New Phytol; 2013 Jul; 199(1):89-100. PubMed ID: 23534834
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Tree genetic engineering and applications to sustainable forestry and biomass production.
    Harfouche A; Meilan R; Altman A
    Trends Biotechnol; 2011 Jan; 29(1):9-17. PubMed ID: 20970211
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.
    Anderegg LD; HilleRisLambers J
    Glob Chang Biol; 2016 Mar; 22(3):1029-45. PubMed ID: 26663665
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sequencing and assembly of the 22-gb loblolly pine genome.
    Zimin A; Stevens KA; Crepeau MW; Holtz-Morris A; Koriabine M; Marçais G; Puiu D; Roberts M; Wegrzyn JL; de Jong PJ; Neale DB; Salzberg SL; Yorke JA; Langley CH
    Genetics; 2014 Mar; 196(3):875-90. PubMed ID: 24653210
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms.
    Palle SR; Seeve CM; Eckert AJ; Wegrzyn JL; Neale DB; Loopstra CA
    Tree Physiol; 2013 Jul; 33(7):763-74. PubMed ID: 23933831
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An improved method of RNA isolation from loblolly pine (P. taeda L.) and other conifer species.
    Lorenz WW; Yu YS; Dean JF
    J Vis Exp; 2010 Feb; (36):. PubMed ID: 20177393
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Poplar genomics is getting popular: the impact of the poplar genome project on tree research.
    Tuskan GA; DiFazio SP; Teichmann T
    Plant Biol (Stuttg); 2004; 6(1):2-4. PubMed ID: 15095128
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics.
    Neale DB; Martínez-García PJ; De La Torre AR; Montanari S; Wei XX
    Annu Rev Plant Biol; 2017 Apr; 68():457-483. PubMed ID: 28226237
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hydraulic limitation not declining nitrogen availability causes the age-related photosynthetic decline in loblolly pine (Pinus taeda L.).
    Drake JE; Raetz LM; Davis SC; DeLucia EH
    Plant Cell Environ; 2010 Oct; 33(10):1756-66. PubMed ID: 20545880
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Forest biotech edges out of the lab.
    Mann CC; Plummer ML
    Science; 2002 Mar; 295(5560):1626-9. PubMed ID: 11872814
    [No Abstract]   [Full Text] [Related]  

  • 71. Poplar genome sequence: functional genomics in an ecologically dominant plant species.
    Brunner AM; Busov VB; Strauss SH
    Trends Plant Sci; 2004 Jan; 9(1):49-56. PubMed ID: 14729219
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Combining Genotype, Phenotype, and Environment to Infer Potential Candidate Genes.
    Talbot B; Chen TW; Zimmerman S; Joost S; Eckert AJ; Crow TM; Semizer-Cuming D; Seshadri C; Manel S
    J Hered; 2017 Mar; 108(2):207-216. PubMed ID: 28003371
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblolly pine forest ecosystem grown in elevated atmospheric carbon dioxide.
    Springer CJ; DeLucia EH; Thomas RB
    Tree Physiol; 2005 Apr; 25(4):385-94. PubMed ID: 15687087
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide.
    DeLucia EH; George K; Hamilton JG
    Tree Physiol; 2002 Oct; 22(14):1003-10. PubMed ID: 12359527
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome.
    Visser EA; Wegrzyn JL; Steenkmap ET; Myburg AA; Naidoo S
    BMC Genomics; 2015 Dec; 16():1057. PubMed ID: 26652261
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genetic effects on total phenolics, condensed tannins and non-structural carbohydrates in loblolly pine (Pinus taeda L.) needles.
    Aspinwall MJ; King JS; Booker FL; McKeand SE
    Tree Physiol; 2011 Aug; 31(8):831-42. PubMed ID: 21831860
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Populus: arabidopsis for forestry. Do we need a model tree?
    Taylor G
    Ann Bot; 2002 Dec; 90(6):681-9. PubMed ID: 12451023
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees.
    Liu L; Filkov V; Groover A
    Physiol Plant; 2014 Jun; 151(2):156-63. PubMed ID: 24117954
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Accelerating the domestication of forest trees in a changing world.
    Harfouche A; Meilan R; Kirst M; Morgante M; Boerjan W; Sabatti M; Scarascia Mugnozza G
    Trends Plant Sci; 2012 Feb; 17(2):64-72. PubMed ID: 22209522
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The ratio of NPP to GPP: evidence of change over the course of stand development.
    Mäkelä A; Valentine HT
    Tree Physiol; 2001 Sep; 21(14):1015-30. PubMed ID: 11560815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.