These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18450625)

  • 1. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years.
    Selmi TA; Verdonk P; Chambat P; Dubrana F; Potel JF; Barnouin L; Neyret P
    J Bone Joint Surg Br; 2008 May; 90(5):597-604. PubMed ID: 18450625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arthroscopic Minced Cartilage Implantation for Chondral Lesions at the Talus: A Technical Note.
    Roth KE; Ossendorff R; Klos K; Simons P; Drees P; Salzmann GM
    Arthrosc Tech; 2021 Apr; 10(4):e1149-e1154. PubMed ID: 33981564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose.
    Lee DA; Bader DL
    J Orthop Res; 1997 Mar; 15(2):181-8. PubMed ID: 9167619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs.
    Schulz RM; Wüstneck N; van Donkelaar CC; Shelton JC; Bader A
    Biotechnol Bioeng; 2008 Nov; 101(4):714-28. PubMed ID: 18814291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthetic response of cartilage explants to dynamic compression.
    Sah RL; Kim YJ; Doong JY; Grodzinsky AJ; Plaas AH; Sandy JD
    J Orthop Res; 1989; 7(5):619-36. PubMed ID: 2760736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolayer expansion induces an oxidative metabolism and ROS in chondrocytes.
    Heywood HK; Lee DA
    Biochem Biophys Res Commun; 2008 Aug; 373(2):224-9. PubMed ID: 18555010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic mechanical compression influences nitric oxide production by articular chondrocytes seeded in agarose.
    Lee DA; Frean SP; Lees P; Bader DL
    Biochem Biophys Res Commun; 1998 Oct; 251(2):580-5. PubMed ID: 9792816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach.
    Xavier JR; Thakur T; Desai P; Jaiswal MK; Sears N; Cosgriff-Hernandez E; Kaunas R; Gaharwar AK
    ACS Nano; 2015 Mar; 9(3):3109-18. PubMed ID: 25674809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Top 50 Most-Cited Studies about Osteochondritis Dissecans.
    Thomas ND; Mahler R; Krombholz K; Williams B; Ganley T; Nepple JJ; Shea K
    Arthrosc Sports Med Rehabil; 2024 Feb; 6(1):100859. PubMed ID: 38260824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective.
    Chen L; Zhou C; Jiang C; Huang X; Liu Z; Zhang H; Liang W; Zhao J
    Front Bioeng Biotechnol; 2023; 11():1206806. PubMed ID: 37675405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional bioprinting of artificial blood vessel: Process, bioinks, and challenges.
    Hou YC; Cui X; Qin Z; Su C; Zhang G; Tang JN; Li JA; Zhang JY
    Int J Bioprint; 2023; 9(4):740. PubMed ID: 37323481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofiber scaffolds based on extracellular matrix for articular cartilage engineering: A perspective.
    Ahmadian E; Eftekhari A; Janas D; Vahedi P
    Nanotheranostics; 2023; 7(1):61-69. PubMed ID: 36593799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic application of hydrogels for bone-related diseases.
    Liu X; Sun S; Wang N; Kang R; Xie L; Liu X
    Front Bioeng Biotechnol; 2022; 10():998988. PubMed ID: 36172014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product.
    Guo X; Ma Y; Min Y; Sun J; Shi X; Gao G; Sun L; Wang J
    Bioact Mater; 2023 Feb; 20():501-518. PubMed ID: 35846847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of Autologous Chondrocyte and Mesenchymal Stem Cell Implants for the Treatment of Focal Chondral Defects in Human Knee Joints-A Systematic Review and Meta-Analysis.
    Epanomeritakis IE; Lee E; Lu V; Khan W
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoring Carboxylates on Highly Modified Alginates Improves Gelation, Tissue Retention and Systemic Capture.
    Moody CT; Brown AE; Massaro NP; Patel AS; Agarwalla PA; Simpson AM; Brown AC; Zheng H; Pierce JG; Brudno Y
    Acta Biomater; 2022 Jan; 138():208-217. PubMed ID: 34728426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate-Agarose Hydrogels Improve the In Vitro Differentiation of Human Dental Pulp Stem Cells in Chondrocytes. A Histological Study.
    Oliver-Ferrándiz M; Milián L; Sancho-Tello M; Martín de Llano JJ; Gisbert Roca F; Martínez-Ramos C; Carda C; Mata M
    Biomedicines; 2021 Jul; 9(7):. PubMed ID: 34356898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical evaluation after matrix-associated autologous chondrocyte transplantation : a comparison of four different graft types.
    Binder H; Hoffman L; Zak L; Tiefenboeck T; Aldrian S; Albrecht C
    Bone Joint Res; 2021 Jul; 10(7):370-379. PubMed ID: 34189928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified Alginate-Based Hydrogel as a Carrier of the CB2 Agonist JWH133 for Bone Engineering.
    Zhou W; Li Q; Ma R; Huang W; Zhang X; Liu Y; Xu Z; Zhang L; Li M; Zhu C
    ACS Omega; 2021 Mar; 6(10):6861-6870. PubMed ID: 33748600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in 3D Printing of Elastic and High-Strength Hydrogels for the Treatment of Osteochondral and Cartilage Diseases.
    Dai W; Sun M; Leng X; Hu X; Ao Y
    Front Bioeng Biotechnol; 2020; 8():604814. PubMed ID: 33330436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.