BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18450984)

  • 1. Effect of prior chronic contractile activity on mitochondrial function and apoptotic protein expression in denervated muscle.
    O'Leary MF; Hood DA
    J Appl Physiol (1985); 2008 Jul; 105(1):114-20. PubMed ID: 18450984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle.
    Adhihetty PJ; Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E748-55. PubMed ID: 17106065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle.
    Adhihetty PJ; O'Leary MF; Chabi B; Wicks KL; Hood DA
    J Appl Physiol (1985); 2007 Mar; 102(3):1143-51. PubMed ID: 17122379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electromyostimulation on apoptosis-related factors in denervation and reinnervation of rat skeletal muscles.
    Lim JY; Han TR
    Muscle Nerve; 2010 Sep; 42(3):422-30. PubMed ID: 20589896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis.
    Ljubicic V; Adhihetty PJ; Hood DA
    J Appl Physiol (1985); 2004 Sep; 97(3):976-83. PubMed ID: 15145919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals.
    O'Leary MF; Vainshtein A; Carter HN; Zhang Y; Hood DA
    Am J Physiol Cell Physiol; 2012 Aug; 303(4):C447-54. PubMed ID: 22673615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle.
    Siu PM; Alway SE
    J Physiol; 2005 May; 565(Pt 1):309-23. PubMed ID: 15774533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle.
    Chabi B; Ljubicic V; Menzies KJ; Huang JH; Saleem A; Hood DA
    Aging Cell; 2008 Jan; 7(1):2-12. PubMed ID: 18028258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions.
    Connor MK; Bezborodova O; Escobar CP; Hood DA
    J Appl Physiol (1985); 2000 May; 88(5):1601-6. PubMed ID: 10797119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinase-specific responsiveness to incremental contractile activity in skeletal muscle with low and high mitochondrial content.
    Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2008 Jul; 295(1):E195-204. PubMed ID: 18492778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased DNA fragmentation and apoptotic signaling in soleus muscle of hypertensive rats following 6 weeks of treadmill training.
    McMillan EM; Graham DA; Rush JW; Quadrilatero J
    J Appl Physiol (1985); 2012 Oct; 113(7):1048-57. PubMed ID: 22858629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific attenuation of protein kinase phosphorylation in muscle with a high mitochondrial content.
    Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E749-58. PubMed ID: 19549794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle.
    Ljubicic V; Joseph AM; Adhihetty PJ; Huang JH; Saleem A; Uguccioni G; Hood DA
    Aging (Albany NY); 2009 Sep; 1(9):818-30. PubMed ID: 20157569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli.
    Adhihetty PJ; Ljubicic V; Menzies KJ; Hood DA
    Am J Physiol Cell Physiol; 2005 Oct; 289(4):C994-C1001. PubMed ID: 15901602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse.
    Chabi B; Adhihetty PJ; O'Leary MF; Menzies KJ; Hood DA
    J Appl Physiol (1985); 2009 Dec; 107(6):1730-5. PubMed ID: 19797682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of gene expression of 2-mo denervated, 2-mo stimulated-denervated, and control rat skeletal muscles.
    Kostrominova TY; Dow DE; Dennis RG; Miller RA; Faulkner JA
    Physiol Genomics; 2005 Jul; 22(2):227-43. PubMed ID: 15840640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of denervation-induced muscle disuse on mitochondrial protein import.
    Singh K; Hood DA
    Am J Physiol Cell Physiol; 2011 Jan; 300(1):C138-45. PubMed ID: 20943961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial energetics in liver and skeletal muscle after energy restriction in young rats.
    Crescenzo R; Bianco F; Falcone I; Coppola P; Dulloo AG; Liverini G; Iossa S
    Br J Nutr; 2012 Aug; 108(4):655-65. PubMed ID: 22085624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio.
    Childs AC; Phaneuf SL; Dirks AJ; Phillips T; Leeuwenburgh C
    Cancer Res; 2002 Aug; 62(16):4592-8. PubMed ID: 12183413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of muscular electrophysiological and mitochondrial dysfunction following exposure to malathion, an organophosphorus pesticide.
    Karami-Mohajeri S; Hadian MR; Fouladdel S; Azizi E; Ghahramani MH; Hosseini R; Abdollahi M
    Hum Exp Toxicol; 2014 Mar; 33(3):251-63. PubMed ID: 23774768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.