These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 18451437)

  • 1. Optimal algorithms for the interval location problem with range constraints on length and average.
    Hsieh YH; Yu CC; Wang BF
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(2):281-90. PubMed ID: 18451437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MAVG: locating non-overlapping maximum average segments in a given sequence.
    Lin YL; Huang X; Jiang T; Chao KM
    Bioinformatics; 2003 Jan; 19(1):151-2. PubMed ID: 12499306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compositional searching of CpG islands in the human genome.
    Luque-Escamilla PL; Martínez-Aroza J; Oliver JL; Gómez-Lopera JF; Román-Roldán R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061925. PubMed ID: 16089783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimally separating sequences.
    Myers G
    Genome Inform; 2001; 12():165-74. PubMed ID: 11791235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient alignment algorithm for searching simple pseudoknots over long genomic sequence.
    Ma C; Wong TK; Lam TW; Hon WK; Sadakane K; Yiu SM
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1629-38. PubMed ID: 22848134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A space-efficient algorithm for the constrained pairwise sequence alignment problem.
    He D; Arslan AN
    Genome Inform; 2005; 16(2):237-46. PubMed ID: 16901106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification.
    Marsan L; Sagot MF
    J Comput Biol; 2000; 7(3-4):345-62. PubMed ID: 11108467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model.
    Chen ZZ; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1400-10. PubMed ID: 21282867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finding motifs using random projections.
    Buhler J; Tompa M
    J Comput Biol; 2002; 9(2):225-42. PubMed ID: 12015879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast optimal genome tiling with applications to microarray design and homology search.
    Berman P; Bertone P; Dasgupta B; Gerstein M; Kao MY; Snyder M
    J Comput Biol; 2004; 11(4):766-85. PubMed ID: 15579244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Output-sensitive algorithms for finding the nested common intervals of two general sequences.
    Wang BF
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):548-59. PubMed ID: 21844635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved heuristic algorithm for finding motif signals in DNA sequences.
    Huang CW; Lee WS; Hsieh SY
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(4):959-75. PubMed ID: 20855921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Graph-Based Approach for the DNA Word Design Problem.
    Luncasu V; Raschip M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2747-2752. PubMed ID: 32750888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering simple DNA sequences by compression.
    Powell DR; Dowe DL; Allison L; Dix TI
    Pac Symp Biocomput; 1998; ():597-608. PubMed ID: 9697215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on parameterized algorithms of the individual haplotyping problem.
    Xie M; Chen J; Wang J
    J Bioinform Comput Biol; 2007 Jun; 5(3):795-816. PubMed ID: 17688317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Ultra-Fast and Parallelizable Algorithm for Finding k-Mismatch Shortest Unique Substrings.
    Allen DR; Thankachan SV; Xu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):138-148. PubMed ID: 31985439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots.
    Jiang M
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):323-32. PubMed ID: 20431151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using suffix tree to discover complex repetitive patterns in DNA sequences.
    He D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3474-7. PubMed ID: 17945779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA splice site detection: a comparison of specific and general methods.
    Kim W; Wilbur WJ
    Proc AMIA Symp; 2002; ():390-4. PubMed ID: 12463853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An algorithm for finding signals of unknown length in DNA sequences.
    Pavesi G; Mauri G; Pesole G
    Bioinformatics; 2001; 17 Suppl 1():S207-14. PubMed ID: 11473011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.