BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18451559)

  • 1. Trypsin-catalyzed synthesis of dipeptide containing alpha-aminoisobutyric acid using p- and m-(amidinomethyl)phenyl esters as acyl donor.
    Sekizaki H; Itoh K; Shibuya A; Toyota E; Kojoma M; Tanizawa K
    Chem Pharm Bull (Tokyo); 2008 May; 56(5):688-91. PubMed ID: 18451559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypsin-catalyzed peptide synthesis with m-guanidinophenyl and m-(guanidinomethyl)phenyl esters as acyl donor component.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Amino Acids; 1999; 17(3):285-91. PubMed ID: 10582127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypsin-catalyzed peptide synthesis and various p-guanidinophenyl esters as acyl donors.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 1996 Aug; 44(8):1585-7. PubMed ID: 8795277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chum salmon trypsin-catalyzed preferential formation of peptides containing D-amino acid.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Amino Acids; 2001; 21(2):175-84. PubMed ID: 11665813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic peptide synthesis with p-guanidinophenyl and p-(guanidinomethyl)phenyl esters as acyl donors.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 1998 May; 46(5):846-9. PubMed ID: 9621419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple preparation of pacific cod trypsin for enzymatic Peptide synthesis.
    Fuchise T; Sekizaki H; Kishimura H; Klomklao S; Nalinanon S; Benjakul S; Chun BS
    J Amino Acids; 2011; 2011():912382. PubMed ID: 22312475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atlantic cod trypsin-catalyzed peptide synthesis with inverse substrates as acyl donor components.
    Fuchise T; Kishimura H; Yang ZH; Kojoma M; Toyota E; Sekizaki H
    Chem Pharm Bull (Tokyo); 2010 Apr; 58(4):484-7. PubMed ID: 20410629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypsin-catalysed synthesis of oligopeptide amides: comparison of catalytic efficiency among trypsins of different origin (bovine, Streptomyces griseus and chum salmon).
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    J Pept Sci; 2002 Sep; 8(9):521-8. PubMed ID: 12371705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile synthesis of p- and m-(amidinomethyl)phenyl esters derived from amino acid and tryptic hydrolysis of these synthetic inverse substrates.
    Sekizaki H; Itoh K; Shibuya A; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 2007 Oct; 55(10):1514-7. PubMed ID: 17917298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypsin-catalyzed kinetically controlled synthesis of a precursor dipeptide of thymopentin in organic solvents, using a free amino acid as nucleophile.
    Wang N; Huang YB; Xu L; Wu XX; Zhang XZ
    Prep Biochem Biotechnol; 2004 Feb; 34(1):45-56. PubMed ID: 15046296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of trypsin and related enzymes toward amidinophenyl esters.
    Nozawa M; Tanizawa K; Kanaoka Y; Moriya H
    J Pharmacobiodyn; 1981 Aug; 4(8):559-64. PubMed ID: 6457906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of secondary interaction on the enzymatic activity of trypsin-like enzymes from Streptomyces.
    Morihara K; Oka T
    Arch Biochem Biophys; 1973 Jun; 156(2):764-71. PubMed ID: 4198077
    [No Abstract]   [Full Text] [Related]  

  • 13. Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins.
    Sekizaki H; Itoh K; Murakami M; Toyota E; Tanizawa K
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Nov; 127(3):337-46. PubMed ID: 11126764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of a precursor dipeptide of thymopentin in organic solvents by an enzymatic method.
    Li SJ; Zhao Y; Huang YB; Gao G; Zhang DH; Xu L; Li G; Zhang XZ
    Prep Biochem Biotechnol; 2008; 38(2):158-71. PubMed ID: 18320467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes.
    Nozawa M; Tanizawa K; Kanaoka Y
    J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transpeptidation reactions of a specific substrate catalyzed by the streptomyces R61 DD-peptidase: characterization of a chromogenic substrate and acyl acceptor design.
    Kumar I; Pratt RF
    Biochemistry; 2005 Aug; 44(30):9971-9. PubMed ID: 16042374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approaches to peptide synthesis with the help of trypsin.
    Mitin YuV ; Zapevalova NP; Gorbunova EYu
    Biomed Biochim Acta; 1991; 50(10-11):S74-9. PubMed ID: 1820064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Streptomyces griseus and bovine trypsin by active site analysis using fluorescent acyl groups.
    Tanizawa K; Nakano M; Kanaoka Y
    Biochim Biophys Acta; 1987 Jul; 913(3):292-9. PubMed ID: 3109486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically stabilized trypsin used in dipeptide synthesis.
    Murphy A; O Fágáin C
    Biotechnol Bioeng; 1998 May; 58(4):366-73. PubMed ID: 10099270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide sweeteners. 6. Structural studies on the C-terminal amino acid of L-aspartyl dipeptide sweeteners.
    Tsang JW; Schmied B; Nyfeler R; Goodman M
    J Med Chem; 1984 Dec; 27(12):1663-8. PubMed ID: 6502595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.