BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 18451980)

  • 21. The SU(VAR)3-9/HP1 complex differentially regulates the compaction state and degree of underreplication of X chromosome pericentric heterochromatin in Drosophila melanogaster.
    Demakova OV; Pokholkova GV; Kolesnikova TD; Demakov SA; Andreyeva EN; Belyaeva ES; Zhimulev IF
    Genetics; 2007 Feb; 175(2):609-20. PubMed ID: 17151257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex.
    Meller VH; Rattner BP
    EMBO J; 2002 Mar; 21(5):1084-91. PubMed ID: 11867536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. JIL-1 and Su(var)3-7 interact genetically and counteract each other's effect on position-effect variegation in Drosophila.
    Deng H; Cai W; Wang C; Lerach S; Delattre M; Girton J; Johansen J; Johansen KM
    Genetics; 2010 Aug; 185(4):1183-92. PubMed ID: 20457875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dosage compensation complex shapes the conformation of the X chromosome in Drosophila.
    Grimaud C; Becker PB
    Genes Dev; 2009 Nov; 23(21):2490-5. PubMed ID: 19884256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different chromatin interfaces of the Drosophila dosage compensation complex revealed by high-shear ChIP-seq.
    Straub T; Zabel A; Gilfillan GD; Feller C; Becker PB
    Genome Res; 2013 Mar; 23(3):473-85. PubMed ID: 23233545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterochromatin formation in Drosophila requires genome-wide histone deacetylation in cleavage chromatin before mid-blastula transition in early embryogenesis.
    Walther M; Schrahn S; Krauss V; Lein S; Kessler J; Jenuwein T; Reuter G
    Chromosoma; 2020 Mar; 129(1):83-98. PubMed ID: 31950239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cumulative contributions of weak DNA determinants to targeting the Drosophila dosage compensation complex.
    Gilfillan GD; König C; Dahlsveen IK; Prakoura N; Straub T; Lamm R; Fauth T; Becker PB
    Nucleic Acids Res; 2007; 35(11):3561-72. PubMed ID: 17483514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autoregulation of the Drosophila Noncoding roX1 RNA Gene.
    Lim CK; Kelley RL
    PLoS Genet; 2012; 8(3):e1002564. PubMed ID: 22438819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Organization of Pericentromeric Heterochromatin in Polytene Chromosome 3 of the
    Zykova T; Maltseva M; Goncharov F; Boldyreva L; Pokholkova G; Kolesnikova T; Zhimulev I
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The non-dosage compensated Lsp1alpha gene of Drosophila melanogaster escapes acetylation by MOF in larval fat body nuclei, but is flanked by two dosage compensated genes.
    Weake VM; Scott MJ
    BMC Mol Biol; 2007 May; 8():35. PubMed ID: 17511883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progressive dosage compensation during Drosophila embryogenesis is reflected by gene arrangement.
    Prayitno K; Schauer T; Regnard C; Becker PB
    EMBO Rep; 2019 Aug; 20(8):e48138. PubMed ID: 31286660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dosage Compensation of the X Chromosome: A Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding RNAs.
    Samata M; Akhtar A
    Annu Rev Biochem; 2018 Jun; 87():323-350. PubMed ID: 29668306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MSL complex associates with clusters of actively transcribed genes along the Drosophila male X chromosome.
    Larschan E; Alekseyenko AA; Lai WR; Park PJ; Kuroda MI
    Cold Spring Harb Symp Quant Biol; 2006; 71():385-94. PubMed ID: 17381321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila.
    Scott MJ; Pan LL; Cleland SB; Knox AL; Heinrich J
    EMBO J; 2000 Jan; 19(1):144-55. PubMed ID: 10619853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MSL2 combines sensor and effector functions in homeostatic control of the Drosophila dosage compensation machinery.
    Villa R; Forné I; Müller M; Imhof A; Straub T; Becker PB
    Mol Cell; 2012 Nov; 48(4):647-54. PubMed ID: 23084834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Drosophila GAGA factor is required for dosage compensation in males and for the formation of the male-specific-lethal complex chromatin entry site at 12DE.
    Greenberg AJ; Yanowitz JL; Schedl P
    Genetics; 2004 Jan; 166(1):279-89. PubMed ID: 15020425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Posttranscriptional control of X-chromosome dosage compensation.
    Graindorge A; Militti C; Gebauer F
    Wiley Interdiscip Rev RNA; 2011; 2(4):534-45. PubMed ID: 21957042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster.
    Demakova OV; Kotlikova IV; Gordadze PR; Alekseyenko AA; Kuroda MI; Zhimulev IF
    Chromosoma; 2003 Oct; 112(3):103-15. PubMed ID: 14579126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Drosophila insulator protein facilitates dosage compensation of the X chromosome min-white gene located at autosomal insertion sites.
    Roseman RR; Swan JM; Geyer PK
    Development; 1995 Nov; 121(11):3573-82. PubMed ID: 8582271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations in Su(var)205 and Su(var)3-7 suppress P-element-dependent silencing in Drosophila melanogaster.
    Bushey D; Locke J
    Genetics; 2004 Nov; 168(3):1395-411. PubMed ID: 15579693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.