These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 18452004)

  • 1. Catalytic addition of alkyne C-H, amine N-H, and phosphine P-H bonds to carbodiimides: an efficient route to propiolamidines, guanidines, and phosphaguanidines.
    Zhang WX; Hou Z
    Org Biomol Chem; 2008 May; 6(10):1720-30. PubMed ID: 18452004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic addition of amine N-H bonds to carbodiimides by half-sandwich rare-earth metal complexes: efficient synthesis of substituted guanidines through amine protonolysis of rare-earth metal guanidinates.
    Zhang WX; Nishiura M; Hou Z
    Chemistry; 2007; 13(14):4037-51. PubMed ID: 17348047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Half-sandwich o-N,N-dimethylaminobenzyl complexes over the full size range of group 3 and lanthanide metals. synthesis, structural characterization, and catalysis of phosphine P--H bond addition to carbodiimides.
    Zhang WX; Nishiura M; Mashiko T; Hou Z
    Chemistry; 2008; 14(7):2167-79. PubMed ID: 18081127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divalent lanthanide complexes: highly active precatalysts for the addition of N-H and C-H bonds to carbodiimides.
    Du Z; Li W; Zhu X; Xu F; Shen Q
    J Org Chem; 2008 Nov; 73(22):8966-72. PubMed ID: 18937411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn(OTf)(2)-catalyzed addition of amines to carbodiimides: efficient synthesis of guanidines and unpredicted formation of Zn-N amido species.
    Li D; Guang J; Zhang WX; Wang Y; Xi Z
    Org Biomol Chem; 2010 Apr; 8(8):1816-20. PubMed ID: 20449484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkali-metal-catalyzed addition of primary and secondary phosphines to carbodiimides. A general and efficient route to substituted phosphaguanidines.
    Zhang WX; Nishiura M; Hou Z
    Chem Commun (Camb); 2006 Sep; (36):3812-4. PubMed ID: 16969466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic addition of terminal alkynes to carbodiimides by half-sandwich rare earth metal complexes.
    Zhang WX; Nishiura M; Hou Z
    J Am Chem Soc; 2005 Dec; 127(48):16788-9. PubMed ID: 16316216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphaguanidines as scaffolds for multimetallic complexes containing metal-functionalized phosphines.
    Grundy J; Mansfield NE; Coles MP; Hitchcock PB
    Inorg Chem; 2008 Apr; 47(7):2258-60. PubMed ID: 18293912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient one-pot synthesis of 2,3-dihydropyrimidinthiones via multicomponent coupling of terminal alkynes, elemental sulfur, and carbodiimides.
    Wang Z; Wang Y; Zhang WX; Hou Z; Xi Z
    J Am Chem Soc; 2009 Oct; 131(42):15108-9. PubMed ID: 19919156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guanidines: from classical approaches to efficient catalytic syntheses.
    Alonso-Moreno C; AntiƱolo A; Carrillo-Hermosilla F; Otero A
    Chem Soc Rev; 2014 May; 43(10):3406-25. PubMed ID: 24626874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the critical step in catalytic carbodiimide transformation: proton transfer from amines, phosphines, and alkynes to guanidinates, phosphaguanidinates, and propiolamidinates with Li and Al catalysts.
    Rowley CN; Ong TG; Priem J; Richeson DS; Woo TK
    Inorg Chem; 2008 Dec; 47(24):12024-31. PubMed ID: 19006297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and structural investigation of tungsten imido amidinate and guanidinate complexes.
    Wilder CB; Reitfort LL; Abboud KA; McElwee-White L
    Inorg Chem; 2006 Jan; 45(1):263-8. PubMed ID: 16390064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic construction and reconstruction of guanidines: Ti-mediated guanylation of amines and transamination of guanidines.
    Ong TG; Yap GP; Richeson DS
    J Am Chem Soc; 2003 Jul; 125(27):8100-1. PubMed ID: 12837069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M=C bond reactivity.
    Whited MT; Grubbs RH
    Acc Chem Res; 2009 Oct; 42(10):1607-16. PubMed ID: 19624162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic synthesis of tricyclic quinoline derivatives from the regioselective hydroamination and C-H bond activation reaction of benzocyclic amines and alkynes.
    Yi CS; Yun SY; Guzei IA
    J Am Chem Soc; 2005 Apr; 127(16):5782-3. PubMed ID: 15839664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-free synthesis of cyclic di-oxoguanidines via one-pot sequential transformation of amines, carbodiimides and acyl dichlorides.
    Zhao F; Wang Y; Zhang WX; Xi Z
    Org Biomol Chem; 2012 Aug; 10(31):6266-70. PubMed ID: 22707050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphines bearing alkyne substituents: synthesis and hydrophosphination polymerization.
    Greenberg S; Stephan DW
    Inorg Chem; 2009 Sep; 48(17):8623-31. PubMed ID: 19645501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amidolithium and amidoaluminum catalyzed synthesis of substituted guanidines: an interplay of DFT modeling and experiment.
    Rowley CN; Ong TG; Priem J; Woo TK; Richeson DS
    Inorg Chem; 2008 Oct; 47(20):9660-8. PubMed ID: 18811151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic metallonitrene/alkyne metathesis: a powerful cascade process for the synthesis of nitrogen-containing molecules.
    Thornton AR; Blakey SB
    J Am Chem Soc; 2008 Apr; 130(15):5020-1. PubMed ID: 18355007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.