BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18452028)

  • 1. Formation of composites comprised of calcium deficient HAp and cross-linked gelatin.
    Touny AH; Laurencin C; Nair L; Allcock H; Brown PW
    J Mater Sci Mater Med; 2008 Oct; 19(10):3193-201. PubMed ID: 18452028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of calcium deficient HAp/collagen composites by hydrolysis of alpha-TCP.
    Touny AH; Bhaduri S; Brown PW
    J Mater Sci Mater Med; 2010 Sep; 21(9):2533-41. PubMed ID: 20652375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin.
    Lin FH; Yao CH; Sun JS; Liu HC; Huang CW
    Biomaterials; 1998 May; 19(10):905-17. PubMed ID: 9690832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of calcium-deficient hydroxyapatite from alpha-tricalcium phosphate.
    TenHuisen KS; Brown PW
    Biomaterials; 1998 Dec; 19(23):2209-17. PubMed ID: 9884062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of magnesium on hydroxyapatite formation in vitro from CaHPO4 and Ca4(PO4)2O at 37.4 degrees C.
    Martin RI; Brown PW
    Calcif Tissue Int; 1997 Jun; 60(6):538-46. PubMed ID: 9164829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apatite formation in composites of alpha-TCP and degradable polyesters.
    Van Den Vreken NM; Pieters IY; De Maeyer EA; Jackers GJ; Schacht EH; Verbeeck RM
    J Biomater Sci Polym Ed; 2006; 17(9):953-67. PubMed ID: 17094635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of hydroxyapatite/gelatin nanocomposite using polyacrylamide.
    Chang MC; Kim UK; Douglas WH
    J Biomater Sci Polym Ed; 2009; 20(3):363-75. PubMed ID: 19192361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde.
    Chang MC; Ko CC; Douglas WH
    Biomaterials; 2003 Aug; 24(18):3087-94. PubMed ID: 12895581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-deficient hydroxyapatite-PLGA composites: mechanical and microstructural investigation.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):726-34. PubMed ID: 10880122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and properties of composites comprised of calcium-deficient hydroxyapatites and ethyl alanate polyphosphazenes.
    Greish YE; Sturgeon JL; Singh A; Krogman NR; Touny AH; Sethuraman S; Nair LS; Laurencin CT; Allcock HR; Brown PW
    J Mater Sci Mater Med; 2008 Sep; 19(9):3153-60. PubMed ID: 18437537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic evolution of a porous hydroxyapatite-poly(vinylalcohol)-gelatin composite.
    Nayar S; Sinha A
    Colloids Surf B Biointerfaces; 2004 May; 35(1):29-32. PubMed ID: 15261052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood and cell compatibility of gelatin-carrageenan mixtures cross-linked by glutaraldehyde.
    Kim SS; Kim HW; Yuk SH; Oh SY; Pak PK; Lee HB
    Biomaterials; 1996 Apr; 17(8):813-21. PubMed ID: 8730966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the method of apatite seed crystals addition on setting reaction of α-tricalcium phosphate based apatite cement.
    Tsuru K; Ruslin ; Maruta M; Matsuya S; Ishikawa K
    J Mater Sci Mater Med; 2015 Oct; 26(10):244. PubMed ID: 26411440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic evaluation of glutaraldehyde crosslinked gelatin composite with fetal rat calvarial culture model.
    Liu HC; Yao CH; Sun JS; Lee CJ; Huang CW; Lin FH
    Artif Organs; 2001 Aug; 25(8):644-54. PubMed ID: 11531717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze dried cross linking free biodegradable composites with microstructures for tissue engineering and drug delivery application.
    Joshy MI; Elayaraja K; Sakthivel N; Chandra VS; Shanthini GM; Kalkura SN
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):466-74. PubMed ID: 25428097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. XPS study for the microstructure development of hydroxyapatite-collagen nanocomposites cross-linked using glutaraldehyde.
    Chang MC; Tanaka J
    Biomaterials; 2002 Sep; 23(18):3879-85. PubMed ID: 12164193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An open-pored gelatin/hydroxyapatite composite as a potential bone substitute.
    Hillig WB; Choi Y; Murthy S; Natravali N; Ajayan P
    J Mater Sci Mater Med; 2008 Jan; 19(1):11-7. PubMed ID: 17701320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sealing effects of cross-linked gelatin.
    Suzuki S; Ikada Y
    J Biomater Appl; 2013 Mar; 27(7):801-10. PubMed ID: 22274878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.