These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 18452039)
1. Antileishmanial activity in vitro and in vivo of constituents of sea cucumber Actinopyga lecanora. Singh N; Kumar R; Gupta S; Dube A; Lakshmi V Parasitol Res; 2008 Jul; 103(2):351-4. PubMed ID: 18452039 [TBL] [Abstract][Full Text] [Related]
2. Antifungal activity in triterpene glycosides from the sea cucumber Actinopyga lecanora. Kumar R; Chaturvedi AK; Shukla PK; Lakshmi V Bioorg Med Chem Lett; 2007 Aug; 17(15):4387-91. PubMed ID: 17587569 [TBL] [Abstract][Full Text] [Related]
3. Lecanorosides A and B, two new triterpene glycosides from the sea cucumber Actinopyga lecanora. Zhang SL; Li L; Sun P; Yi YH J Asian Nat Prod Res; 2008; 10(11-12):1097-103. PubMed ID: 19031253 [TBL] [Abstract][Full Text] [Related]
4. Antileishmanial potential of a marine sponge, Haliclona exigua (Kirkpatrick) against experimental visceral leishmaniasis. Dube A; Singh N; Saxena A; Lakshmi V Parasitol Res; 2007 Jul; 101(2):317-24. PubMed ID: 17294216 [TBL] [Abstract][Full Text] [Related]
5. Antileishmanial activity of quinovic acid glycosides and cadambine acid isolated from Nauclea diderrichii. Di Giorgio C; Lamidi M; Delmas F; Balansard G; Ollivier E Planta Med; 2006 Dec; 72(15):1396-402. PubMed ID: 17089325 [TBL] [Abstract][Full Text] [Related]
6. Antileishmanial and immunomodulatory activities of lupeol, a triterpene compound isolated from Sterculia villosa. Das A; Jawed JJ; Das MC; Sandhu P; De UC; Dinda B; Akhter Y; Bhattacharjee S Int J Antimicrob Agents; 2017 Oct; 50(4):512-522. PubMed ID: 28669838 [TBL] [Abstract][Full Text] [Related]
7. Antifungal active triterpene glycosides from sea cucumber Holothuria scabra. Han H; Yi YH; Li L; Liu BS; La MP; Zhang HW Yao Xue Xue Bao; 2009 Jun; 44(6):620-4. PubMed ID: 19806893 [TBL] [Abstract][Full Text] [Related]
8. Critical evaluation of the therapeutic potential of bassic acid incorporated in oil-in-water microemulsions and poly-D,L-lactide nanoparticles against experimental leishmaniasis. Lala S; Gupta S; Sahu NP; Mandal D; Mondal NB; Moulik SP; Basu MK J Drug Target; 2006 May; 14(4):171-9. PubMed ID: 16777677 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the antileishmanial potency, toxicity and phytochemical constituents of methanol bark extract of Sterculia villosa. Das A; Das MC; Das N; Bhattacharjee S Pharm Biol; 2017 Dec; 55(1):998-1009. PubMed ID: 28173714 [TBL] [Abstract][Full Text] [Related]
10. Leishmanicidal and anticandidal activity of constituents of Indian edible mushroom Astraeus hygrometricus. Lai TK; Biswas G; Chatterjee S; Dutta A; Pal C; Banerji J; Bhuvanesh N; Reibenspies JH; Acharya K Chem Biodivers; 2012 Aug; 9(8):1517-24. PubMed ID: 22899612 [TBL] [Abstract][Full Text] [Related]
11. Holothurins B(2), B(3), and B(4), new triterpene glycosides from mediterranean sea cucumbers of the genus holothuria. Silchenko AS; Stonik VA; Avilov SA; Kalinin VI; Kalinovsky AI; Zaharenko AM; Smirnov AV; Mollo E; Cimino G J Nat Prod; 2005 Apr; 68(4):564-7. PubMed ID: 15844949 [TBL] [Abstract][Full Text] [Related]
12. SAR refinement of antileishmanial N(2),N(4)-disubstituted quinazoline-2,4-diamines. Zhu X; Van Horn KS; Barber MM; Yang S; Wang MZ; Manetsch R; Werbovetz KA Bioorg Med Chem; 2015 Aug; 23(16):5182-9. PubMed ID: 25749014 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and antileishmanial activity of novel 2,4,6-trisubstituted pyrimidines and 1,3,5-triazines. Sunduru N; Nishi ; Palne S; Chauhan PM; Gupta S Eur J Med Chem; 2009 Jun; 44(6):2473-81. PubMed ID: 19217698 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of sulfated triterpene glycosides, holothurin A1, and 24-dehydroechinoside A, on antimetastasic activity via regulation of the MMP-9 signal pathway. Zhao Q; Xue Y; Liu ZD; Li H; Wang JF; Li ZJ; Wang YM; Dong P; Xue CH J Food Sci; 2010; 75(9):H280-8. PubMed ID: 21535601 [TBL] [Abstract][Full Text] [Related]
15. Bioactive triterpene glycosides from the sea cucumber Holothuria fuscocinerea. Zhang SY; Yi YH; Tang HF J Nat Prod; 2006 Oct; 69(10):1492-5. PubMed ID: 17067169 [TBL] [Abstract][Full Text] [Related]
16. Design, synthesis and biological evaluation of 2-substituted quinolines as potential antileishmanial agents. Gopinath VS; Pinjari J; Dere RT; Verma A; Vishwakarma P; Shivahare R; Moger M; Kumar Goud PS; Ramanathan V; Bose P; Rao MV; Gupta S; Puri SK; Launay D; Martin D Eur J Med Chem; 2013 Nov; 69():527-36. PubMed ID: 24095747 [TBL] [Abstract][Full Text] [Related]
17. Exploration of antileishmanial activity in heterocycles; results of their in vivo & in vitro bioevaluations. Bhatnagar S; Guru PY; Katiyar JC; Srivastava R; Mukherjee A; Akhtar MS; Seth M; Bhaduri AP Indian J Med Res; 1989 Nov; 89():439-44. PubMed ID: 2620947 [TBL] [Abstract][Full Text] [Related]
18. Screening of marine extracts for schistosomicidal activity in vitro. Isolation of the triterpene glycosides echinosides A and B with potential activity from the Sea Cucumbers Actinopyga echinites and Holothuria polii. Melek FR; Tadros MM; Yousif F; Selim MA; Hassan MH Pharm Biol; 2012 Apr; 50(4):490-6. PubMed ID: 22136393 [TBL] [Abstract][Full Text] [Related]
19. Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties. Mondol MAM; Shin HJ; Rahman MA; Islam MT Mar Drugs; 2017 Oct; 15(10):. PubMed ID: 29039760 [TBL] [Abstract][Full Text] [Related]
20. Development of Leishmania donovani stably expressing DsRed for flow cytometry-based drug screening using chalcone thiazolyl-hydrazone as a new antileishmanial target. Jaiswal AK; Rao KB; Kushwaha P; Rawat K; Modukuri RK; Khare P; Joshi S; Mishra S; Rai A; Sashidhara KV; Dube A Int J Antimicrob Agents; 2016 Dec; 48(6):695-702. PubMed ID: 27876275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]