BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 18452130)

  • 1. A new chemiluminescence paradox: selective inhibition of isoluminol-amplified activity in phagocytes by peptides from annexin AI.
    Dahlberg M; Dahlgren C; Hellstrand K; Movitz C
    Luminescence; 2008; 23(3):139-43. PubMed ID: 18452130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phagocyte chemiluminescence paradox: luminol can act as an inhibitor of neutrophil NADPH-oxidase activity.
    Fäldt J; Ridell M; Karlsson A; Dahlgren C
    Luminescence; 1999; 14(3):153-60. PubMed ID: 10423576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An attempt to design an isoluminol-hydrogen peroxidase-amplified CL that measures intracellularly produced H2O2 in phagocytes: sensitivity for H2O2 is not high enough to allow detection.
    Stenfeldt AL; Dahlgren C
    Luminescence; 2007; 22(5):507-10. PubMed ID: 17610299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminol-, isoluminol- and lucigenin-enhanced chemiluminescence of rat blood phagocytes stimulated with different activators.
    Pavelkova M; Kubala L
    Luminescence; 2004; 19(1):37-42. PubMed ID: 14981645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of different luminols on the characteristics of the chemiluminescence reaction in human neutrophils.
    Lundqvist H; Kricka LJ; Stott RA; Thorpe GH; Dahlgren C
    J Biolumin Chemilumin; 1995; 10(6):353-9. PubMed ID: 8588512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemistry and chemiluminescence techniques compared in the detection of NADPH oxidase activity in phagocyte cells.
    Ashkenazi A; Abu-Rabeah K; Marks RS
    Talanta; 2009 Feb; 77(4):1460-5. PubMed ID: 19084665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of different chemilumigenic substrates for detecting extracellular generation of reactive oxygen species by phagocytes and endothelial cells.
    Kopprasch S; Pietzsch J; Graessler J
    Luminescence; 2003; 18(5):268-73. PubMed ID: 14587078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiating between intra- and extracellular chemiluminescence in diluted whole-blood samples.
    Rájecký M; Lojek A; Cíž M
    Int J Lab Hematol; 2012 Apr; 34(2):136-42. PubMed ID: 21834798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant effect of hydroxytyrosol, a polyphenol from olive oil: scavenging of hydrogen peroxide but not superoxide anion produced by human neutrophils.
    O'Dowd Y; Driss F; Dang PM; Elbim C; Gougerot-Pocidalo MA; Pasquier C; El-Benna J
    Biochem Pharmacol; 2004 Nov; 68(10):2003-8. PubMed ID: 15476671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils.
    Lundqvist H; Dahlgren C
    Free Radic Biol Med; 1996; 20(6):785-92. PubMed ID: 8728025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant properties of dipyridamole as assessed by chemiluminescence.
    Vargas F; Rivas C; Díaz Y; Contreras N; Silva A; Ojeda LE; Velásquez M; Fraile G
    Pharmazie; 2003 Nov; 58(11):817-23. PubMed ID: 14664339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of assays for the measurement of bovine neutrophil reactive oxygen species.
    Rinaldi M; Moroni P; Paape MJ; Bannerman DD
    Vet Immunol Immunopathol; 2007 Jan; 115(1-2):107-25. PubMed ID: 17067684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new technique for enhancing luminol luminescent detection of free radicals and reactive oxygen species.
    Trevithick JR; Dzialoszynski T
    Biochem Mol Biol Int; 1994 Aug; 33(6):1179-90. PubMed ID: 7804144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of respiratory burst products generated by professional phagocytes.
    Dahlgren C; Karlsson A; Bylund J
    Methods Mol Biol; 2007; 412():349-63. PubMed ID: 18453123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies of the chemiluminescent horseradish peroxidase-catalysed peroxidation of acridan (GZ-11) and luminol reactions: effect of pH and scavengers of reactive oxygen species on the light intensity of these systems.
    Osman AM; Zomer G; Laane C; Hilhorst R
    Luminescence; 2000; 15(3):189-97. PubMed ID: 10862148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity and sensitivity in the measurement of reactive oxygen species (ROS) using chemiluminescent microspheres prepared by the binding of acridinium ester or ABEI to polymer microspheres.
    Hosaka S; Itagaki T; Kuramitsu Y
    Luminescence; 1999; 14(6):349-54. PubMed ID: 10602307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous use of electrochemistry and chemiluminescence to detect reactive oxygen species produced by human neutrophils.
    Shleev S; Wetterö J; Magnusson KE; Ruzgas T
    Cell Biol Int; 2008 Dec; 32(12):1486-96. PubMed ID: 18782628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of NAD(P)H oxidase-derived superoxide with the luminol analogue L-012.
    Daiber A; August M; Baldus S; Wendt M; Oelze M; Sydow K; Kleschyov AL; Munzel T
    Free Radic Biol Med; 2004 Jan; 36(1):101-11. PubMed ID: 14732294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant effect of sulphurous thermal water on human neutrophil bursts: chemiluminescence evaluation.
    Braga PC; Sambataro G; Dal Sasso M; Culici M; Alfieri M; Nappi G
    Respiration; 2008; 75(2):193-201. PubMed ID: 17804898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of oxygen abstraction on the peroxidase-luminol-perborate system: relevance to the HRP enhanced chemiluminescence mechanism.
    Cercek B; Cercek B; Roby K; Cercek L
    J Biolumin Chemilumin; 1994; 9(4):273-7. PubMed ID: 7985528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.