These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 18452130)
1. A new chemiluminescence paradox: selective inhibition of isoluminol-amplified activity in phagocytes by peptides from annexin AI. Dahlberg M; Dahlgren C; Hellstrand K; Movitz C Luminescence; 2008; 23(3):139-43. PubMed ID: 18452130 [TBL] [Abstract][Full Text] [Related]
2. The phagocyte chemiluminescence paradox: luminol can act as an inhibitor of neutrophil NADPH-oxidase activity. Fäldt J; Ridell M; Karlsson A; Dahlgren C Luminescence; 1999; 14(3):153-60. PubMed ID: 10423576 [TBL] [Abstract][Full Text] [Related]
3. An attempt to design an isoluminol-hydrogen peroxidase-amplified CL that measures intracellularly produced H2O2 in phagocytes: sensitivity for H2O2 is not high enough to allow detection. Stenfeldt AL; Dahlgren C Luminescence; 2007; 22(5):507-10. PubMed ID: 17610299 [TBL] [Abstract][Full Text] [Related]
4. Luminol-, isoluminol- and lucigenin-enhanced chemiluminescence of rat blood phagocytes stimulated with different activators. Pavelkova M; Kubala L Luminescence; 2004; 19(1):37-42. PubMed ID: 14981645 [TBL] [Abstract][Full Text] [Related]
5. Influence of different luminols on the characteristics of the chemiluminescence reaction in human neutrophils. Lundqvist H; Kricka LJ; Stott RA; Thorpe GH; Dahlgren C J Biolumin Chemilumin; 1995; 10(6):353-9. PubMed ID: 8588512 [TBL] [Abstract][Full Text] [Related]
6. Electrochemistry and chemiluminescence techniques compared in the detection of NADPH oxidase activity in phagocyte cells. Ashkenazi A; Abu-Rabeah K; Marks RS Talanta; 2009 Feb; 77(4):1460-5. PubMed ID: 19084665 [TBL] [Abstract][Full Text] [Related]
7. Validation of different chemilumigenic substrates for detecting extracellular generation of reactive oxygen species by phagocytes and endothelial cells. Kopprasch S; Pietzsch J; Graessler J Luminescence; 2003; 18(5):268-73. PubMed ID: 14587078 [TBL] [Abstract][Full Text] [Related]
8. Differentiating between intra- and extracellular chemiluminescence in diluted whole-blood samples. Rájecký M; Lojek A; Cíž M Int J Lab Hematol; 2012 Apr; 34(2):136-42. PubMed ID: 21834798 [TBL] [Abstract][Full Text] [Related]
9. Antioxidant effect of hydroxytyrosol, a polyphenol from olive oil: scavenging of hydrogen peroxide but not superoxide anion produced by human neutrophils. O'Dowd Y; Driss F; Dang PM; Elbim C; Gougerot-Pocidalo MA; Pasquier C; El-Benna J Biochem Pharmacol; 2004 Nov; 68(10):2003-8. PubMed ID: 15476671 [TBL] [Abstract][Full Text] [Related]
10. Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils. Lundqvist H; Dahlgren C Free Radic Biol Med; 1996; 20(6):785-92. PubMed ID: 8728025 [TBL] [Abstract][Full Text] [Related]
11. Antioxidant properties of dipyridamole as assessed by chemiluminescence. Vargas F; Rivas C; Díaz Y; Contreras N; Silva A; Ojeda LE; Velásquez M; Fraile G Pharmazie; 2003 Nov; 58(11):817-23. PubMed ID: 14664339 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of assays for the measurement of bovine neutrophil reactive oxygen species. Rinaldi M; Moroni P; Paape MJ; Bannerman DD Vet Immunol Immunopathol; 2007 Jan; 115(1-2):107-25. PubMed ID: 17067684 [TBL] [Abstract][Full Text] [Related]
13. A new technique for enhancing luminol luminescent detection of free radicals and reactive oxygen species. Trevithick JR; Dzialoszynski T Biochem Mol Biol Int; 1994 Aug; 33(6):1179-90. PubMed ID: 7804144 [TBL] [Abstract][Full Text] [Related]
14. Measurement of respiratory burst products generated by professional phagocytes. Dahlgren C; Karlsson A; Bylund J Methods Mol Biol; 2007; 412():349-63. PubMed ID: 18453123 [TBL] [Abstract][Full Text] [Related]
15. Comparative studies of the chemiluminescent horseradish peroxidase-catalysed peroxidation of acridan (GZ-11) and luminol reactions: effect of pH and scavengers of reactive oxygen species on the light intensity of these systems. Osman AM; Zomer G; Laane C; Hilhorst R Luminescence; 2000; 15(3):189-97. PubMed ID: 10862148 [TBL] [Abstract][Full Text] [Related]
16. Selectivity and sensitivity in the measurement of reactive oxygen species (ROS) using chemiluminescent microspheres prepared by the binding of acridinium ester or ABEI to polymer microspheres. Hosaka S; Itagaki T; Kuramitsu Y Luminescence; 1999; 14(6):349-54. PubMed ID: 10602307 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous use of electrochemistry and chemiluminescence to detect reactive oxygen species produced by human neutrophils. Shleev S; Wetterö J; Magnusson KE; Ruzgas T Cell Biol Int; 2008 Dec; 32(12):1486-96. PubMed ID: 18782628 [TBL] [Abstract][Full Text] [Related]
18. Measurement of NAD(P)H oxidase-derived superoxide with the luminol analogue L-012. Daiber A; August M; Baldus S; Wendt M; Oelze M; Sydow K; Kleschyov AL; Munzel T Free Radic Biol Med; 2004 Jan; 36(1):101-11. PubMed ID: 14732294 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant effect of sulphurous thermal water on human neutrophil bursts: chemiluminescence evaluation. Braga PC; Sambataro G; Dal Sasso M; Culici M; Alfieri M; Nappi G Respiration; 2008; 75(2):193-201. PubMed ID: 17804898 [TBL] [Abstract][Full Text] [Related]
20. Effect of oxygen abstraction on the peroxidase-luminol-perborate system: relevance to the HRP enhanced chemiluminescence mechanism. Cercek B; Cercek B; Roby K; Cercek L J Biolumin Chemilumin; 1994; 9(4):273-7. PubMed ID: 7985528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]