BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18452174)

  • 1. Potentiation of chemotherapeutic drugs by energy metabolism inhibitors 2-deoxyglucose and etomoxir.
    Hernlund E; Ihrlund LS; Khan O; Ates YO; Linder S; Panaretakis T; Shoshan MC
    Int J Cancer; 2008 Jul; 123(2):476-483. PubMed ID: 18452174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs.
    Ihrlund LS; Hernlund E; Khan O; Shoshan MC
    Mol Oncol; 2008 Jun; 2(1):94-101. PubMed ID: 19383331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoptotic efficacy of etomoxir in human acute myeloid leukemia cells. Cooperation with arsenic trioxide and glycolytic inhibitors, and regulation by oxidative stress and protein kinase activities.
    Estañ MC; Calviño E; Calvo S; Guillén-Guío B; Boyano-Adánez Mdel C; de Blas E; Rial E; Aller P
    PLoS One; 2014; 9(12):e115250. PubMed ID: 25506699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ovarian carcinoma cells with low levels of beta-F1-ATPase are sensitive to combined platinum and 2-deoxy-D-glucose treatment.
    Hernlund E; Hjerpe E; Avall-Lundqvist E; Shoshan M
    Mol Cancer Ther; 2009 Jul; 8(7):1916-23. PubMed ID: 19567816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-Deoxy-D-glucose has distinct and cell line-specific effects on the survival of different cancer cells upon antitumor drug treatment.
    Maximchik P; Abdrakhmanov A; Inozemtseva E; Tyurin-Kuzmin PA; Zhivotovsky B; Gogvadze V
    FEBS J; 2018 Dec; 285(24):4590-4601. PubMed ID: 30375744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Berberine combined with 2-deoxy-d-glucose synergistically enhances cancer cell proliferation inhibition via energy depletion and unfolded protein response disruption.
    Fan LX; Liu CM; Gao AH; Zhou YB; Li J
    Biochim Biophys Acta; 2013 Nov; 1830(11):5175-83. PubMed ID: 23872355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Etomoxir, a fatty acid oxidation inhibitor, increases food intake and reduces hepatic energy status in rats.
    Horn CC; Ji H; Friedman MI
    Physiol Behav; 2004 Mar; 81(1):157-62. PubMed ID: 15059695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mechanism for the Temporal Potentiation of Genipin to the Cytotoxicity of Cisplatin in Colon Cancer Cells.
    Wang R; MoYung KC; Zhao YJ; Poon K
    Int J Med Sci; 2016; 13(7):507-16. PubMed ID: 27429587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tea polyphenols modulate antioxidant redox system on cisplatin-induced reactive oxygen species generation in a human breast cancer cell.
    Periasamy VS; Alshatwi AA
    Basic Clin Pharmacol Toxicol; 2013 Jun; 112(6):374-84. PubMed ID: 23145928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism.
    Cheng G; Zielonka J; McAllister D; Hardy M; Ouari O; Joseph J; Dwinell MB; Kalyanaraman B
    Cancer Lett; 2015 Aug; 365(1):96-106. PubMed ID: 26004344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells.
    Ben Sahra I; Laurent K; Giuliano S; Larbret F; Ponzio G; Gounon P; Le Marchand-Brustel Y; Giorgetti-Peraldi S; Cormont M; Bertolotto C; Deckert M; Auberger P; Tanti JF; Bost F
    Cancer Res; 2010 Mar; 70(6):2465-75. PubMed ID: 20215500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway.
    Wang R; Ma L; Weng D; Yao J; Liu X; Jin F
    Oncol Rep; 2016 May; 35(5):3075-83. PubMed ID: 26987028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-Deoxy-d-Glucose Sensitizes Human Ovarian Cancer Cells to Cisplatin by Increasing ER Stress and Decreasing ATP Stores in Acidic Vesicles.
    Zhang L; Su J; Xie Q; Zeng L; Wang Y; Yi D; Yu Y; Liu S; Li S; Xu Y
    J Biochem Mol Toxicol; 2015 Dec; 29(12):572-8. PubMed ID: 26241884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the determinants of 2-deoxyglucose sensitivity in cancer cells by shRNA library screening.
    Kobayashi H; Nishimura H; Matsumoto K; Yoshida M
    Biochem Biophys Res Commun; 2015 Nov; 467(1):121-7. PubMed ID: 26403972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncoupling protein-2 knockdown mediates the cytotoxic effects of cisplatin.
    Santandreu FM; Roca P; Oliver J
    Free Radic Biol Med; 2010 Aug; 49(4):658-66. PubMed ID: 20595066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells.
    Pike LS; Smift AL; Croteau NJ; Ferrick DA; Wu M
    Biochim Biophys Acta; 2011 Jun; 1807(6):726-34. PubMed ID: 21692241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549.
    Marostica LL; Silva IT; Kratz JM; Persich L; Geller FC; Lang KL; Caro MS; Durán FJ; Schenkel EP; Simões CM
    Chem Res Toxicol; 2015 Oct; 28(10):1949-60. PubMed ID: 26372186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells.
    Hu Z; Zeng Q; Zhang B; Liu H; Wang W
    Biochimie; 2014 Dec; 107 Pt B():257-62. PubMed ID: 25220870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of the glycolysis inhibitor 2-deoxy-D-glucose on the activity of pro-apoptotic agents in metastatic melanoma cells, and induction of a cytoprotective autophagic response.
    Giammarioli AM; Gambardella L; Barbati C; Pietraforte D; Tinari A; Alberton M; Gnessi L; Griffin RJ; Minetti M; Malorni W
    Int J Cancer; 2012 Aug; 131(4):E337-47. PubMed ID: 21913183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting cisplatin-resistant human tumor cells with metabolic inhibitors.
    Sullivan EJ; Kurtoglu M; Brenneman R; Liu H; Lampidis TJ
    Cancer Chemother Pharmacol; 2014 Feb; 73(2):417-27. PubMed ID: 24352250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.