These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 18452190)

  • 1. Cell membrane deformations under magnetic force modulation characterized by optical tracking and non-interferometric widefield profilometry.
    Wang CC; Jian HJ; Wu CW; Lee CH
    Microsc Res Tech; 2008 Aug; 71(8):594-8. PubMed ID: 18452190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eukaryotic membrane tethers revisited using magnetic tweezers.
    Hosu BG; Sun M; Marga F; Grandbois M; Forgacs G
    Phys Biol; 2007 Apr; 4(2):67-78. PubMed ID: 17664652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of cell membranes and the underlying cytoskeletons observed by noninterferometric widefield optical profilometry and fluorescence microscopy.
    Wang CC; Lin JY; Chen HC; Lee CH
    Opt Lett; 2006 Oct; 31(19):2873-5. PubMed ID: 16969407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer.
    Alenghat FJ; Fabry B; Tsai KY; Goldmann WH; Ingber DE
    Biochem Biophys Res Commun; 2000 Oct; 277(1):93-9. PubMed ID: 11027646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model for the dynamics of large membrane deformations of isolated fibroblasts.
    Stéphanou A; Chaplain MA; Tracqui P
    Bull Math Biol; 2004 Sep; 66(5):1119-54. PubMed ID: 15294420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between apical membrane elasticity and stress fiber organization in fibroblasts analyzed by fluorescence and atomic force microscopy.
    Kidoaki S; Matsuda T; Yoshikawa K
    Biomech Model Mechanobiol; 2006 Nov; 5(4):263-72. PubMed ID: 16767450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of neutrophil membrane compliance and microstructure probed with a micropipet-based piconewton force transducer.
    Simon SI; Nyunt T; Florine-Casteel K; Ritchie K; Ting-Beall HP; Evans E; Needham D
    Ann Biomed Eng; 2007 Apr; 35(4):595-604. PubMed ID: 17370125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A probabilistic model for ligand-cytoskeleton transmembrane adhesion: predicting the behavior of microspheres on the surface of migrating cells.
    Thoumine O; Meister JJ
    J Theor Biol; 2000 Jun; 204(3):381-92. PubMed ID: 10816362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluctuation analysis of myosin-coated bead movement along actin bundles of Nitella.
    Yamasaki H; Nakayama H
    Biochem Biophys Res Commun; 1996 Apr; 221(3):831-6. PubMed ID: 8630047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of nanoparticle internalization on cellular membranes by using noninterferometric widefield optical profilometry.
    Wang CC; Lee CW; Huang CY; Lin JY; Wei PK; Lee CH
    Appl Opt; 2008 May; 47(13):2458-64. PubMed ID: 18449313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Analysis of membrane protein movement by single particle tracking and laser-beam gradient force optical trap].
    Tomishige M; Kusumi A
    Nihon Seirigaku Zasshi; 1997; 59(1):11-21. PubMed ID: 9213590
    [No Abstract]   [Full Text] [Related]  

  • 13. Multiplexed single-molecule measurements with magnetic tweezers.
    Ribeck N; Saleh OA
    Rev Sci Instrum; 2008 Sep; 79(9):094301. PubMed ID: 19044437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane ripples of a living cell measured by non-interferometric widefield optical profilometry.
    Wang CC; Lin JY; Lee CH
    Opt Express; 2005 Dec; 13(26):10665-72. PubMed ID: 19503281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an apparatus to control load by electromagnet for a motility system in vitro.
    Watari T; Ono A; Ishii Y; Zhenli H; Miyake S; Tsuchiya T
    Adv Exp Med Biol; 2003; 538():111-8; discussion 118. PubMed ID: 15098659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules.
    Kusumi A; Nakada C; Ritchie K; Murase K; Suzuki K; Murakoshi H; Kasai RS; Kondo J; Fujiwara T
    Annu Rev Biophys Biomol Struct; 2005; 34():351-78. PubMed ID: 15869394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The force acting on a superparamagnetic bead due to an applied magnetic field.
    Shevkoplyas SS; Siegel AC; Westervelt RM; Prentiss MG; Whitesides GM
    Lab Chip; 2007 Oct; 7(10):1294-302. PubMed ID: 17896013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics of neutrophil phagocytosis: experiments and quantitative models.
    Herant M; Heinrich V; Dembo M
    J Cell Sci; 2006 May; 119(Pt 9):1903-13. PubMed ID: 16636075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers.
    Bordeleau F; Bessard J; Marceau N; Sheng Y
    J Biomed Opt; 2011 Sep; 16(9):095005. PubMed ID: 21950914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-particle tracking and laser optical tweezers studies of the dynamics of individual protein molecules in membranes of intact human and mouse red cells.
    Mirchev R; Golan DE
    Blood Cells Mol Dis; 2001; 27(1):143-7. PubMed ID: 11358375
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.