These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 18452212)
1. Partial destabilization of native structure by a combination of heat and denaturant facilitates cold denaturation in a hyperthermophile protein. Chandrayan SK; Guptasarma P Proteins; 2008 Aug; 72(2):539-46. PubMed ID: 18452212 [TBL] [Abstract][Full Text] [Related]
2. Hyperthermophile protein behavior: partially-structured conformations of Pyrococcus furiosus rubredoxin monomers generated through forced cold-denaturation and refolding. Chandrayan SK; Prakash S; Ahmed S; Guptasarma P PLoS One; 2014; 9(3):e80014. PubMed ID: 24603413 [TBL] [Abstract][Full Text] [Related]
3. Slow irreversible unfolding of Pyrococcus furiosus triosephosphate isomerase: separation and quantitation of conformers through a novel electrophoretic approach. Mukherjee S; Sharma S; Kumar S; Guptasarma P Anal Biochem; 2005 Dec; 347(1):49-59. PubMed ID: 16236239 [TBL] [Abstract][Full Text] [Related]
4. Kinetically robust monomeric protein from a hyperthermophile. Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048 [TBL] [Abstract][Full Text] [Related]
5. Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus. Granata V; Vecchio PD; Barone G; Shehi E; Fusi P; Tortora P; Graziano G Int J Biol Macromol; 2004 Jun; 34(3):195-201. PubMed ID: 15225992 [TBL] [Abstract][Full Text] [Related]
6. Direct proteolysis-based purification of an overexpressed hyperthermophile protein from Escherichia coli lysate: a novel exploitation of the link between structural stability and proteolytic resistance. Mukherjee S; Guptasarma P Protein Expr Purif; 2005 Mar; 40(1):71-6. PubMed ID: 15721773 [TBL] [Abstract][Full Text] [Related]
7. Stability and folding mechanism of mesophilic, thermophilic and hyperthermophilic archael histones: the importance of folding intermediates. Topping TB; Gloss LM J Mol Biol; 2004 Sep; 342(1):247-60. PubMed ID: 15313621 [TBL] [Abstract][Full Text] [Related]
8. Unfolding mechanism of rubredoxin from Pyrococcus furiosus. Cavagnero S; Zhou ZH; Adams MW; Chan SI Biochemistry; 1998 Mar; 37(10):3377-85. PubMed ID: 9521658 [TBL] [Abstract][Full Text] [Related]
9. Denaturant-dependent conformational changes in a beta-trefoil protein: global and residue-specific aspects of an equilibrium denaturation process. Latypov RF; Liu D; Jacob J; Harvey TS; Bondarenko PV; Kleemann GR; Brems DN; Raibekas AA Biochemistry; 2009 Nov; 48(46):10934-47. PubMed ID: 19839644 [TBL] [Abstract][Full Text] [Related]
11. Attenuation of ionic interactions profoundly lowers the kinetic thermal stability of Pyrococcus furiosus triosephosphate isomerase. Chandrayan SK; Guptasarma P Biochim Biophys Acta; 2009 Jun; 1794(6):905-12. PubMed ID: 19306952 [TBL] [Abstract][Full Text] [Related]
12. Kinetically controlled refolding of a heat-denatured hyperthermostable protein. Koutsopoulos S; van der Oost J; Norde W FEBS J; 2007 Nov; 274(22):5915-23. PubMed ID: 17944946 [TBL] [Abstract][Full Text] [Related]
13. Unfolding of Plasmodium falciparum triosephosphate isomerase in urea and guanidinium chloride: evidence for a novel disulfide exchange reaction in a covalently cross-linked mutant. Gokhale RS; Ray SS; Balaram H; Balaram P Biochemistry; 1999 Jan; 38(1):423-31. PubMed ID: 9890925 [TBL] [Abstract][Full Text] [Related]
14. Calcium-induced tertiary structure modifications of endo-beta-1,3-glucanase from Pyrococcus furiosus in 7.9 M guanidinium chloride. Chiaraluce R; Gianese G; Angelaccio S; Florio R; van Lieshout JF; van der Oost J; Consalvi V Biochem J; 2005 Mar; 386(Pt 3):515-24. PubMed ID: 15482259 [TBL] [Abstract][Full Text] [Related]
15. Conformational plasticity of cryptolepain: accumulation of partially unfolded states in denaturants induced equilibrium unfolding. Pande M; Dubey VK; Sahu V; Jagannadham MV J Biotechnol; 2007 Sep; 131(4):404-17. PubMed ID: 17825936 [TBL] [Abstract][Full Text] [Related]
16. Conformational stability and integrity of alpha-amylase from mung beans: evidence of kinetic intermediate in GdmCl-induced unfolding. Tripathi P; Hofmann H; Kayastha AM; Ulbrich-Hofmann R Biophys Chem; 2008 Oct; 137(2-3):95-9. PubMed ID: 18703269 [TBL] [Abstract][Full Text] [Related]
17. Unusually slow denaturation and refolding processes of pyrrolidone carboxyl peptidase from a hyperthermophile are highly cooperative: real-time NMR studies. Iimura S; Yagi H; Ogasahara K; Akutsu H; Noda Y; Segawa S; Yutani K Biochemistry; 2004 Sep; 43(37):11906-15. PubMed ID: 15362877 [TBL] [Abstract][Full Text] [Related]
18. Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus. Laksanalamai P; Pavlov AR; Slesarev AI; Robb FT Biotechnol Bioeng; 2006 Jan; 93(1):1-5. PubMed ID: 16299772 [TBL] [Abstract][Full Text] [Related]
19. Equilibrium denaturation of buffalo pituitary growth hormone. Maithal K; Krishnamurty HG; Muralidhar K Indian J Biochem Biophys; 2001 Dec; 38(6):368-74. PubMed ID: 11989666 [TBL] [Abstract][Full Text] [Related]
20. Chemical and thermal unfolding of glypican-1: protective effect of heparan sulfate against heat-induced irreversible aggregation. Svensson G; Linse S; Mani K Biochemistry; 2009 Oct; 48(42):9994-10004. PubMed ID: 19775117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]