BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18452292)

  • 1. Efficient synthetic access to a new family of highly potent bryostatin analogues via a Prins-driven macrocyclization strategy.
    Wender PA; Dechristopher BA; Schrier AJ
    J Am Chem Soc; 2008 May; 130(21):6658-9. PubMed ID: 18452292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total synthesis of bryostatin 9.
    Wender PA; Schrier AJ
    J Am Chem Soc; 2011 Jun; 133(24):9228-31. PubMed ID: 21618969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro.
    DeChristopher BA; Loy BA; Marsden MD; Schrier AJ; Zack JA; Wender PA
    Nat Chem; 2012 Sep; 4(9):705-10. PubMed ID: 22914190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergent assembly of highly potent analogues of bryostatin 1 via pyran annulation: bryostatin look-alikes that mimic phorbol ester function.
    Keck GE; Kraft MB; Truong AP; Li W; Sanchez CC; Kedei N; Lewin NE; Blumberg PM
    J Am Chem Soc; 2008 May; 130(21):6660-1. PubMed ID: 18452293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total synthesis of bryostatin 16 using a Pd-catalyzed diyne coupling as macrocyclization method and synthesis of C20-epi-bryostatin 7 as a potent anticancer agent.
    Trost BM; Dong G
    J Am Chem Soc; 2010 Nov; 132(46):16403-16. PubMed ID: 21043491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a des-B-ring bryostatin analogue leads to an unexpected ring expansion of the bryolactone core.
    Kraft MB; Poudel YB; Kedei N; Lewin NE; Peach ML; Blumberg PM; Keck GE
    J Am Chem Soc; 2014 Sep; 136(38):13202-8. PubMed ID: 25207434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prins-type macrocyclizations as an efficient ring-closing strategy in natural product synthesis.
    Crane EA; Scheidt KA
    Angew Chem Int Ed Engl; 2010 Nov; 49(45):8316-26. PubMed ID: 20931580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total synthesis of bryostatin 3.
    Trost BM; Wang Y; Buckl AK; Huang Z; Nguyen MH; Kuzmina O
    Science; 2020 May; 368(6494):1007-1011. PubMed ID: 32467391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the A-ring of bryostatin analogues in PKC binding: synthesis and initial biological evaluation of new A-ring-modified bryologs.
    Wender PA; Clarke MO; Horan JC
    Org Lett; 2005 May; 7(10):1995-8. PubMed ID: 15876038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-guided design, synthesis, and protein kinase C affinity of a new salicylate-based class of bryostatin analogs.
    Wender PA; Nakagawa Y; Near KE; Staveness D
    Org Lett; 2014 Oct; 16(19):5136-9. PubMed ID: 25238583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimethylene Methane Dianion Equivalent for the Asymmetric Consecutive Allylation of Aldehydes: Applications to Prins-Driven Macrocyclizations for the Synthesis of Bryostatin 1 and Analogues.
    Wender PA; Luu-Nguyen QH; Sloane JL; Ranjan A
    J Org Chem; 2022 Dec; 87(23):15925-15937. PubMed ID: 36378802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total synthesis and initial biological evaluation of new B-ring-modified bryostatin analogs.
    Wender PA; Horan JC; Verma VA
    Org Lett; 2006 Nov; 8(23):5299-302. PubMed ID: 17078702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The design, synthesis, and evaluation of C7 diversified bryostatin analogs reveals a hot spot for PKC affinity.
    Wender PA; Verma VA
    Org Lett; 2008 Aug; 10(15):3331-4. PubMed ID: 18588309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent efforts to construct the B-ring of bryostatins.
    Gao L; Lu J; Song Z
    Chem Commun (Camb); 2013 Nov; 49(87):10211-20. PubMed ID: 24051556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches.
    Trost BM; Dong G
    Nature; 2008 Nov; 456(7221):485-8. PubMed ID: 19037312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards 20,20-difluorinated bryostatin: synthesis and biological evaluation of C17,C27-fragments.
    Mears PR; Hoekman S; Rye CE; Bailey FP; Byrne DP; Eyers PA; Thomas EJ
    Org Biomol Chem; 2019 Feb; 17(6):1487-1505. PubMed ID: 30681118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and PKC binding of a new class of a-ring diversifiable bryostatin analogues utilizing a double asymmetric hydrogenation and cross-coupling strategy.
    Wender PA; Horan JC
    Org Lett; 2006 Sep; 8(20):4581-4. PubMed ID: 16986955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Biological Evaluation of Several Bryostatin Analogues Bearing a Diacylglycerol Lactone C-Ring.
    Baumann DO; McGowan KM; Kedei N; Peach ML; Blumberg PM; Keck GE
    J Org Chem; 2016 Sep; 81(17):7862-83. PubMed ID: 27494208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a biorelevant structure of protein kinase C bound modulators: design, synthesis, and evaluation of labeled bryostatin analogues for analysis with rotational echo double resonance NMR spectroscopy.
    Loy BA; Lesser AB; Staveness D; Billingsley KL; Cegelski L; Wender PA
    J Am Chem Soc; 2015 Mar; 137(10):3678-85. PubMed ID: 25710634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unlocking the Drug Potential of the Bryostatin Family: Recent Advances in Product Synthesis and Biomedical Applications.
    Wu R; Chen H; Chang N; Xu Y; Jiao J; Zhang H
    Chemistry; 2020 Jan; 26(6):1166-1195. PubMed ID: 31479550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.