These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 18452322)
1. Nanowires of metal-organic complex by photocrystallization: a system to achieve addressable electrically bistable devices and memory elements. Rath AK; Dhara K; Banerjee P; Pal AJ Langmuir; 2008 Jun; 24(11):5937-41. PubMed ID: 18452322 [TBL] [Abstract][Full Text] [Related]
2. Preparation of metal-TCNQ charge-transfer complexes on conducting and insulating surfaces by photocrystallization. O'Mullane AP; Fay N; Nafady A; Bond AM J Am Chem Soc; 2007 Feb; 129(7):2066-73. PubMed ID: 17256937 [TBL] [Abstract][Full Text] [Related]
3. Field emission properties of large-area nanowires of organic charge-transfer complexes. Liu H; Zhao Q; Li Y; Liu Y; Lu F; Zhuang J; Wang S; Jiang L; Zhu D; Yu D; Chi L J Am Chem Soc; 2005 Feb; 127(4):1120-1. PubMed ID: 15669849 [TBL] [Abstract][Full Text] [Related]
4. Resistive molecular memories: influence of molecular parameters on the electrical bistability. Di Motta S; Di Donato E; Negri F; Orlandi G; Fazzi D; Castiglioni C J Am Chem Soc; 2009 May; 131(18):6591-8. PubMed ID: 19374415 [TBL] [Abstract][Full Text] [Related]
5. Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes. Pradhan B; Batabyal SK; Pal AJ J Phys Chem B; 2006 Apr; 110(16):8274-7. PubMed ID: 16623507 [TBL] [Abstract][Full Text] [Related]
6. Core-shell hybrid nanoparticles with functionalized quantum dots and ionic dyes: growth, monolayer formation, and electrical bistability. Das BC; Pal AJ ACS Nano; 2008 Sep; 2(9):1930-8. PubMed ID: 19206434 [TBL] [Abstract][Full Text] [Related]
7. Electrical bistability in electrostatic assemblies of CdSe nanoparticles. Mohanta K; Majee SK; Batabyal SK; Pal AJ J Phys Chem B; 2006 Sep; 110(37):18231-5. PubMed ID: 16970440 [TBL] [Abstract][Full Text] [Related]
8. Conductivity switching and electronic memory effect in polymers with pendant azobenzene chromophores. Lim SL; Li NJ; Lu JM; Ling QD; Zhu CX; Kang ET; Neoh KG ACS Appl Mater Interfaces; 2009 Jan; 1(1):60-71. PubMed ID: 20355755 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of electrical bistability through semiconducting nanoparticles for organic memory applications. Das BC; Pal AJ Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1905):4181-90. PubMed ID: 19770142 [TBL] [Abstract][Full Text] [Related]
10. Wrapping graphene sheets around organic wires for making memory devices. Wang S; Manga KK; Zhao M; Bao Q; Loh KP Small; 2011 Aug; 7(16):2372-8. PubMed ID: 21692180 [TBL] [Abstract][Full Text] [Related]
11. The temperature-dependent physical and electrical characteristics of a polymer/RAFT-polymer stabilized nanoparticle system for organic nonvolatile memory. Chen JR; Lin HT; Hwang GW; Chan YJ; Li PW Nanotechnology; 2009 Jun; 20(25):255706. PubMed ID: 19491462 [TBL] [Abstract][Full Text] [Related]
12. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide. Lee TJ; Chang CW; Hahm SG; Kim K; Park S; Kim DM; Kim J; Kwon WS; Liou GS; Ree M Nanotechnology; 2009 Apr; 20(13):135204. PubMed ID: 19420490 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic and electrochemical evaluation of salt effects on electron-transfer equilibria between donor/acceptor and ion-radical pairs in organic solvents. Rosokha SV; Sun D; Fisher J; Kochi JK Chemphyschem; 2008 Nov; 9(16):2406-13. PubMed ID: 18844321 [TBL] [Abstract][Full Text] [Related]
14. One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices. Zang L; Che Y; Moore JS Acc Chem Res; 2008 Dec; 41(12):1596-608. PubMed ID: 18616298 [TBL] [Abstract][Full Text] [Related]
15. Quantum dots arrangement and energy transfer control via charge-transfer complex achieved on poly(phenylene ethynylene)/schizophyllan nanowires. Shiraki T; Haraguchi S; Tsuchiya Y; Shinkai S Chem Asian J; 2009 Sep; 4(9):1434-41. PubMed ID: 19629958 [TBL] [Abstract][Full Text] [Related]
16. Electronic two-terminal bistable graphitic memories. Li Y; Sinitskii A; Tour JM Nat Mater; 2008 Dec; 7(12):966-71. PubMed ID: 19011617 [TBL] [Abstract][Full Text] [Related]
17. Conductance switching in an organic material: from bulk to monolayer. Rath AK; Pal AJ Langmuir; 2007 Sep; 23(19):9831-5. PubMed ID: 17696370 [TBL] [Abstract][Full Text] [Related]
18. Organic non-volatile memories from ferroelectric phase-separated blends. Asadi K; de Leeuw DM; de Boer B; Blom PW Nat Mater; 2008 Jul; 7(7):547-50. PubMed ID: 18552851 [TBL] [Abstract][Full Text] [Related]
19. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties. Liu Z; Sun K; Jian WB; Xu D; Lin YF; Fang J Chemistry; 2009; 15(18):4546-52. PubMed ID: 19343761 [TBL] [Abstract][Full Text] [Related]
20. Multilevel conductance switching of memory device through photoelectric effect. Ye C; Peng Q; Li M; Luo J; Tang Z; Pei J; Chen J; Shuai Z; Jiang L; Song Y J Am Chem Soc; 2012 Dec; 134(49):20053-9. PubMed ID: 23157302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]