BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18452488)

  • 1. Altered signaling pathway in the dysmorphogenesis of telencephalon in the Gli3 depressed mouse embryo, Pdn/Pdn.
    Ueta E; Kurome M; Teshima Y; Kodama M; Otsuka Y; Naruse I
    Congenit Anom (Kyoto); 2008 Jun; 48(2):74-80. PubMed ID: 18452488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exencephaly induction by valproic acid in the genetic polydactyly/arhinencephaly mouse, Pdn/Pdn.
    Maekawa M; Ohta K; Katagiri R; Ueta E; Naruse I
    Congenit Anom (Kyoto); 2005 Dec; 45(4):132-6. PubMed ID: 16359493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gender-dependent differences in the incidence of ochratoxin A-induced neural tube defects in the Pdn/Pdn mouse.
    Ueta E; Kodama M; Sumino Y; Kurome M; Ohta K; Katagiri R; Naruse I
    Congenit Anom (Kyoto); 2010 Mar; 50(1):29-39. PubMed ID: 20201966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic susceptibility in the neural tube defects induced by ochratoxin A in the genetic arhinencephaly mouse, Pdn/Pdn.
    Ohta K; Maekawa M; Katagiri R; Ueta E; Naruse I
    Congenit Anom (Kyoto); 2006 Sep; 46(3):144-8. PubMed ID: 16922921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevention of ochratoxin A-induced neural tube defects by folic acid in the genetic polydactyly/arhinencephaly mouse, Pdn/Pdn.
    Katagiri R; Kurome M; Teshima Y; Ueta E; Naruse I
    Congenit Anom (Kyoto); 2007 Sep; 47(3):90-6. PubMed ID: 17688467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sonic hedgehog expression in Gli3 depressed mouse embryo, Pdn/Pdn.
    Ueta E; Maekawa M; Morimoto I; Nanba E; Naruse I
    Congenit Anom (Kyoto); 2004 Mar; 44(1):27-32. PubMed ID: 15008897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF8 signaling patterns the telencephalic midline by regulating putative key factors of midline development.
    Okada T; Okumura Y; Motoyama J; Ogawa M
    Dev Biol; 2008 Aug; 320(1):92-101. PubMed ID: 18547559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary cilia control telencephalic patterning and morphogenesis via Gli3 proteolytic processing.
    Besse L; Neti M; Anselme I; Gerhardt C; Rüther U; Laclef C; Schneider-Maunoury S
    Development; 2011 May; 138(10):2079-88. PubMed ID: 21490064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gli3 is required autonomously for dorsal telencephalic cells to adopt appropriate fates during embryonic forebrain development.
    Quinn JC; Molinek M; Mason JO; Price DJ
    Dev Biol; 2009 Mar; 327(1):204-15. PubMed ID: 19121302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Gli3 hypomorphic mutation Pdn causes selective impairment in the growth, patterning, and axon guidance capability of the lateral ganglionic eminence.
    Magnani D; Hasenpusch-Theil K; Jacobs EC; Campagnoni AT; Price DJ; Theil T
    J Neurosci; 2010 Oct; 30(41):13883-94. PubMed ID: 20943929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Birth defects caused by mutations in human GLI3 and mouse Gli3 genes.
    Naruse I; Ueta E; Sumino Y; Ogawa M; Ishikiriyama S
    Congenit Anom (Kyoto); 2010 Mar; 50(1):1-7. PubMed ID: 20201963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of a transposon into the Gli3 gene in the Pdn mouse.
    Ueta E; Nanba E; Naruse I
    Congenit Anom (Kyoto); 2002 Dec; 42(4):318-22. PubMed ID: 12634451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gli3 controls corpus callosum formation by positioning midline guideposts during telencephalic patterning.
    Magnani D; Hasenpusch-Theil K; Benadiba C; Yu T; Basson MA; Price DJ; Lebrand C; Theil T
    Cereb Cortex; 2014 Jan; 24(1):186-98. PubMed ID: 23042737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh.
    Chen Y; Knezevic V; Ervin V; Hutson R; Ward Y; Mackem S
    Development; 2004 May; 131(10):2339-47. PubMed ID: 15102708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shh and Gli3 regulate formation of the telencephalic-diencephalic junction and suppress an isthmus-like signaling source in the forebrain.
    Rash BG; Grove EA
    Dev Biol; 2011 Nov; 359(2):242-50. PubMed ID: 21925158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic interaction of Gli3 and Alx4 during limb development.
    Panman L; Drenth T; Tewelscher P; Zuniga A; Zeller R
    Int J Dev Biol; 2005; 49(4):443-8. PubMed ID: 15968591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hypermorphic mouse Gli3 allele results in a polydactylous limb phenotype.
    Wang C; Pan Y; Wang B
    Dev Dyn; 2007 Mar; 236(3):769-76. PubMed ID: 17266131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hoxd and Gli3 interactions modulate digit number in the amniote limb.
    Sheth R; Bastida MF; Ros M
    Dev Biol; 2007 Oct; 310(2):430-41. PubMed ID: 17714700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A SHH-independent regulation of Gli3 is a significant determinant of anteroposterior patterning of the limb bud.
    Hill P; Götz K; Rüther U
    Dev Biol; 2009 Apr; 328(2):506-16. PubMed ID: 19248778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution mapping of the Gli3 deletion in the mouse extra-toesH mutant.
    Genestine M; Robert B; Lallemand Y
    Genesis; 2007 Mar; 45(3):107-12. PubMed ID: 17304534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.