These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The GPCR repertoire in the demosponge Amphimedon queenslandica: insights into the GPCR system at the early divergence of animals. Krishnan A; Dnyansagar R; Almén MS; Williams MJ; Fredriksson R; Manoj N; Schiöth HB BMC Evol Biol; 2014 Dec; 14():270. PubMed ID: 25528161 [TBL] [Abstract][Full Text] [Related]
4. The G protein-coupled receptors in the pufferfish Takifugu rubripes. Sarkar A; Kumar S; Sundar D BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S3. PubMed ID: 21342560 [TBL] [Abstract][Full Text] [Related]
5. The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. Krishnan A; Almén MS; Fredriksson R; Schiöth HB PLoS One; 2012; 7(1):e29817. PubMed ID: 22238661 [TBL] [Abstract][Full Text] [Related]
6. Genome wide survey of G protein-coupled receptors in Tetraodon nigroviridis. Metpally RP; Sowdhamini R BMC Evol Biol; 2005 Jul; 5():41. PubMed ID: 16022726 [TBL] [Abstract][Full Text] [Related]
7. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Fredriksson R; Schiöth HB Mol Pharmacol; 2005 May; 67(5):1414-25. PubMed ID: 15687224 [TBL] [Abstract][Full Text] [Related]
8. Prevertebrate Local Gene Duplication Facilitated Expansion of the Neuropeptide GPCR Superfamily. Yun S; Furlong M; Sim M; Cho M; Park S; Cho EB; Reyes-Alcaraz A; Hwang JI; Kim J; Seong JY Mol Biol Evol; 2015 Nov; 32(11):2803-17. PubMed ID: 26337547 [TBL] [Abstract][Full Text] [Related]
9. A genome-wide survey of the genes for planar polarity signaling or convergent extension-related genes in Ciona intestinalis and phylogenetic comparisons of evolutionary conserved signaling components. Hotta K; Takahashi H; Ueno N; Gojobori T Gene; 2003 Oct; 317(1-2):165-85. PubMed ID: 14604806 [TBL] [Abstract][Full Text] [Related]
10. The integrins of the urochordate Ciona intestinalis provide novel insights into the molecular evolution of the vertebrate integrin family. Ewan R; Huxley-Jones J; Mould AP; Humphries MJ; Robertson DL; Boot-Handford RP BMC Evol Biol; 2005 May; 5():31. PubMed ID: 15892888 [TBL] [Abstract][Full Text] [Related]
11. Phylogenetic analysis of Ciona intestinalis gene superfamilies supports the hypothesis of successive gene expansions. Leveugle M; Prat K; Popovici C; Birnbaum D; Coulier F J Mol Evol; 2004 Feb; 58(2):168-81. PubMed ID: 15042337 [TBL] [Abstract][Full Text] [Related]
12. Loss of ancestral genes in the genomic evolution of Ciona intestinalis. Hughes AL; Friedman R Evol Dev; 2005; 7(3):196-200. PubMed ID: 15876192 [TBL] [Abstract][Full Text] [Related]
13. Three insulin-relaxin-like genes in Ciona intestinalis. Olinski RP; Dahlberg C; Thorndyke M; Hallböök F Peptides; 2006 Nov; 27(11):2535-46. PubMed ID: 16920224 [TBL] [Abstract][Full Text] [Related]
14. Repertoires of G protein-coupled receptors for Shiraishi A; Okuda T; Miyasaka N; Osugi T; Okuno Y; Inoue J; Satake H Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7847-7856. PubMed ID: 30936317 [TBL] [Abstract][Full Text] [Related]
15. The G protein-coupled receptor subset of the rat genome. Gloriam DE; Fredriksson R; Schiöth HB BMC Genomics; 2007 Sep; 8():338. PubMed ID: 17892602 [TBL] [Abstract][Full Text] [Related]
16. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Dehal P; Satou Y; Campbell RK; Chapman J; Degnan B; De Tomaso A; Davidson B; Di Gregorio A; Gelpke M; Goodstein DM; Harafuji N; Hastings KE; Ho I; Hotta K; Huang W; Kawashima T; Lemaire P; Martinez D; Meinertzhagen IA; Necula S; Nonaka M; Putnam N; Rash S; Saiga H; Satake M; Terry A; Yamada L; Wang HG; Awazu S; Azumi K; Boore J; Branno M; Chin-Bow S; DeSantis R; Doyle S; Francino P; Keys DN; Haga S; Hayashi H; Hino K; Imai KS; Inaba K; Kano S; Kobayashi K; Kobayashi M; Lee BI; Makabe KW; Manohar C; Matassi G; Medina M; Mochizuki Y; Mount S; Morishita T; Miura S; Nakayama A; Nishizaka S; Nomoto H; Ohta F; Oishi K; Rigoutsos I; Sano M; Sasaki A; Sasakura Y; Shoguchi E; Shin-i T; Spagnuolo A; Stainier D; Suzuki MM; Tassy O; Takatori N; Tokuoka M; Yagi K; Yoshizaki F; Wada S; Zhang C; Hyatt PD; Larimer F; Detter C; Doggett N; Glavina T; Hawkins T; Richardson P; Lucas S; Kohara Y; Levine M; Satoh N; Rokhsar DS Science; 2002 Dec; 298(5601):2157-67. PubMed ID: 12481130 [TBL] [Abstract][Full Text] [Related]
17. Evolution of secretin family GPCR members in the metazoa. Cardoso JC; Pinto VC; Vieira FA; Clark MS; Power DM BMC Evol Biol; 2006 Dec; 6():108. PubMed ID: 17166275 [TBL] [Abstract][Full Text] [Related]
18. The serendipitous origin of chordate secretin peptide family members. Cardoso JC; Vieira FA; Gomes AS; Power DM BMC Evol Biol; 2010 May; 10():135. PubMed ID: 20459630 [TBL] [Abstract][Full Text] [Related]
19. Peptidomic analysis of the central nervous system of the protochordate, Ciona intestinalis: homologs and prototypes of vertebrate peptides and novel peptides. Kawada T; Ogasawara M; Sekiguchi T; Aoyama M; Hotta K; Oka K; Satake H Endocrinology; 2011 Jun; 152(6):2416-27. PubMed ID: 21467196 [TBL] [Abstract][Full Text] [Related]
20. Characterization of novel GPCR gene coding locus in amphioxus genome: gene structure, expression, and phylogenetic analysis with implications for its involvement in chemoreception. Satoh G Genesis; 2005 Feb; 41(2):47-57. PubMed ID: 15682401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]