These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18452781)

  • 21. [Advances in thrombin-protease-activated receptor 1-sphingosine 1-phosphate pathway during sepsis].
    Li Y; Yu KL
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2009 Mar; 21(3):189-91. PubMed ID: 19278594
    [No Abstract]   [Full Text] [Related]  

  • 22. New tricks for old dogs: nonthrombotic effects of thrombin in vessel wall biology.
    Patterson C; Stouffer GA; Madamanchi N; Runge MS
    Circ Res; 2001 May; 88(10):987-97. PubMed ID: 11375267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of a functional role for the protease-activated receptor-1 in hypoxic breast cancer cells.
    Naldini A; Filippi I; Ardinghi C; Silini A; Giavazzi R; Carraro F
    Eur J Cancer; 2009 Feb; 45(3):454-60. PubMed ID: 19046876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thrombin regulation of cell function through protease-activated receptors: implications for therapeutic intervention.
    Derian CK; Damiano BP; D'Andrea MR; Andrade-Gordon P
    Biochemistry (Mosc); 2002 Jan; 67(1):56-64. PubMed ID: 11841340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protease-activated receptors in the cardiovascular system.
    Coughlin SR
    Cold Spring Harb Symp Quant Biol; 2002; 67():197-208. PubMed ID: 12858541
    [No Abstract]   [Full Text] [Related]  

  • 26. Early intraplatelet signaling enhances the release of human platelet PAR-1 and -4 amino-terminal peptides in response to thrombin.
    Ofosu FA; Dewar L; Song Y; Cedrone AC; Hortelano G; Craven SJ
    Biochemistry; 2009 Feb; 48(7):1562-72. PubMed ID: 19182900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Receptor binding and agonist efficacy: new insights from mutants of the thrombin protease-activated receptor-1 (PAR-1).
    Hollenberg MD
    Mol Pharmacol; 2000 Dec; 58(6):1175-7. PubMed ID: 11093751
    [No Abstract]   [Full Text] [Related]  

  • 28. PARticipation in inflammation.
    Coughlin SR; Camerer E
    J Clin Invest; 2003 Jan; 111(1):25-7. PubMed ID: 12511583
    [No Abstract]   [Full Text] [Related]  

  • 29. Protease activated receptor 2 and the cardiovascular system.
    Cicala C
    Br J Pharmacol; 2002 Jan; 135(1):14-20. PubMed ID: 11786474
    [No Abstract]   [Full Text] [Related]  

  • 30. Up-regulation of protease-activated receptor-1 in diabetic glomerulosclerosis.
    Sakai T; Nambu T; Katoh M; Uehara S; Fukuroda T; Nishikibe M
    Biochem Biophys Res Commun; 2009 Jun; 384(2):173-9. PubMed ID: 19401193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thrombin receptor expression in normal and atherosclerotic human arteries.
    Nelken NA; Soifer SJ; O'Keefe J; Vu TK; Charo IF; Coughlin SR
    J Clin Invest; 1992 Oct; 90(4):1614-21. PubMed ID: 1328304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prothrombin/thrombin and the thrombin receptors PAR-1 and PAR-4 in the brain: localization, expression and participation in neurodegenerative diseases.
    Sokolova E; Reiser G
    Thromb Haemost; 2008 Oct; 100(4):576-81. PubMed ID: 18841278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of protease-activated receptor-1 in endothelial nitric oxide synthase-Thr495 phosphorylation.
    Watts VL; Motley ED
    Exp Biol Med (Maywood); 2009 Feb; 234(2):132-9. PubMed ID: 19064940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic analysis of the cleavage of human protease-activated receptor-1 / 2 / 3 and 4 using quenched-fluorescent peptide substrates.
    Fox MT; Greer B; Lawson J; Healy A; Harriott P
    Protein Pept Lett; 2002 Oct; 9(5):387-97. PubMed ID: 12370026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PAR2 is partout and now in the heart.
    Maree A; Fitzgerald D
    Circ Res; 2002 Mar; 90(4):366-8. PubMed ID: 11884361
    [No Abstract]   [Full Text] [Related]  

  • 36. PKC isoenzymes differentially modulate the effect of thrombin on MAPK-dependent RPE proliferation.
    Palma-Nicolas JP; López E; López-Colomé AM
    Biosci Rep; 2008 Dec; 28(6):307-17. PubMed ID: 18636965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-time course of protease-activated receptor-1 expression after intracerebral hemorrhage in rats.
    Zheng GQ; Wang XT; Wang XM; Gao RR; Zeng XL; Fu XL; Wang Y
    Neurosci Lett; 2009 Aug; 459(2):62-5. PubMed ID: 19427359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. G-protein-coupled receptors as signaling targets for antiplatelet therapy.
    Smyth SS; Woulfe DS; Weitz JI; Gachet C; Conley PB; Goodman SG; Roe MT; Kuliopulos A; Moliterno DJ; French PA; Steinhubl SR; Becker RC;
    Arterioscler Thromb Vasc Biol; 2009 Apr; 29(4):449-57. PubMed ID: 19023091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PARs in the stars: proteinase-activated receptors and astrocyte function. Focus on "Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways".
    Hollenberg MD
    Am J Physiol Cell Physiol; 2002 Nov; 283(5):C1347-50. PubMed ID: 12372795
    [No Abstract]   [Full Text] [Related]  

  • 40. Thrombin receptor: An endogenous inhibitor of inflammatory pain, activating opioid pathways.
    Martin L; Augé C; Boué J; Buresi MC; Chapman K; Asfaha S; Andrade-Gordon P; Steinhoff M; Cenac N; Dietrich G; Vergnolle N
    Pain; 2009 Nov; 146(1-2):121-9. PubMed ID: 19674841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.