These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 18453420)

  • 1. Enzyme-based resource allocated decomposition and landscape heterogeneity in the Florida Everglades.
    Penton CR; Newman S
    J Environ Qual; 2008; 37(3):972-6. PubMed ID: 18453420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common-mesocosm experiment recreates sawgrass (Cladium jamaicense) phenotypes from Everglades marl prairies and peat marshes.
    Richards JH; Olivas PC
    Am J Bot; 2020 Jan; 107(1):56-65. PubMed ID: 31889308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades.
    Qian Y; Miao SL; Gu B; Li YC
    J Environ Qual; 2009; 38(2):451-64. PubMed ID: 19202015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus cycling in wetland soils: the importance of phosphate diesters.
    Turner BL; Newman S
    J Environ Qual; 2005; 34(5):1921-9. PubMed ID: 16151243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of the Everglades ridge and slough landscape to climate variability and 20th-century water management.
    Bernhardt CE; Willard DA
    Ecol Appl; 2009 Oct; 19(7):1723-38. PubMed ID: 19831066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant decomposition in wetlands: effects of hydrologic variation in a re-created everglades.
    Serna A; Richards JH; Scinto LJ
    J Environ Qual; 2013; 42(2):562-72. PubMed ID: 23673849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peat Accretion and N, P, and Organic C Accumulation in Nutrient-Enriched and Unenriched Everglades Peatlands.
    Craft CB; Richardson CJ
    Ecol Appl; 1993 Aug; 3(3):446-458. PubMed ID: 27759248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discharge competence and pattern formation in peatlands: a meta-ecosystem model of the Everglades ridge-slough landscape.
    Heffernan JB; Watts DL; Cohen MJ
    PLoS One; 2013; 8(5):e64174. PubMed ID: 23671708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How vegetation and sediment transport feedbacks drive landscape change in the everglades and wetlands worldwide.
    Larsen LG; Harvey JW
    Am Nat; 2010 Sep; 176(3):E66-79. PubMed ID: 20635883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of indices to predict phosphorus release from wetland soils.
    Mukherjee A; Nair VD; Clark MW; Reddy KR
    J Environ Qual; 2009; 38(3):878-86. PubMed ID: 19329676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms.
    Glaser PH; Hansen BC; Donovan JJ; Givnish TJ; Stricker CA; Volin JC
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17211-6. PubMed ID: 24101489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sea-level rise and freshwater management on long-term water levels and water quality in the Florida Coastal Everglades.
    Dessu SB; Price RM; Troxler TG; Kominoski JS
    J Environ Manage; 2018 Apr; 211():164-176. PubMed ID: 29408064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence and distribution of novel botryococcene hydrocarbons in freshwater wetlands of the Florida Everglades.
    Gao M; Simoneit BR; Gantar M; Jaffé R
    Chemosphere; 2007 Dec; 70(2):224-36. PubMed ID: 17688908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus release from ash and remaining tissues of two wetland species after a prescribed fire.
    Liu GD; Gu B; Miao SL; Li YC; Migliaccio KW; Qian Y
    J Environ Qual; 2010; 39(5):1585-93. PubMed ID: 21043264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume.
    Lorah MM; Cozzarelli IM; Böhlke JK
    J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential effects of climate change on Florida's Everglades.
    Nungesser M; Saunders C; Coronado-Molina C; Obeysekera J; Johnson J; McVoy C; Benscoter B
    Environ Manage; 2015 Apr; 55(4):824-35. PubMed ID: 25549995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can differences in phosphorus uptake kinetics explain the distribution of cattail and sawgrass in the Florida Everglades?
    Brix H; Lorenzen B; Mendelssohn IA; McKee KL; Miao S
    BMC Plant Biol; 2010 Feb; 10():23. PubMed ID: 20141632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of plant communities on denitrification in a tidal freshwater marsh of the Potomac River, United States.
    Hopfensperger KN; Kaushal SS; Findlay SE; Cornwell JC
    J Environ Qual; 2009; 38(2):618-26. PubMed ID: 19202032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicted changes in interannual water-level fluctuations due to climate change and its implications for the vegetation of the Florida Everglades.
    van der Valk AG; Volin JC; Wetzel PR
    Environ Manage; 2015 Apr; 55(4):799-806. PubMed ID: 25566832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-state succession in wetlands: a novel use of state and transition models.
    Zweig CL; Kitchens WM
    Ecology; 2009 Jul; 90(7):1900-9. PubMed ID: 19694138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.