These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18453424)

  • 1. Using heat to characterize streambed water flux variability in four stream reaches.
    Essaid HI; Zamora CM; McCarthy KA; Vogel JR; Wilson JT
    J Environ Qual; 2008; 37(3):1010-23. PubMed ID: 18453424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of water, heat, and solute flux through streambeds around small dams.
    Fanelli RM; Lautz LK
    Ground Water; 2008; 46(5):671-87. PubMed ID: 18522652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat as a tracer to estimate dissolved organic carbon flux from a restored wetland.
    Burow KR; Constantz J; Fujii R
    Ground Water; 2005; 43(4):545-56. PubMed ID: 16029180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat, chloride, and specific conductance as ground water tracers near streams.
    Cox MH; Su GW; Constantz J
    Ground Water; 2007; 45(2):187-95. PubMed ID: 17335483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat as a ground water tracer.
    Anderson MP
    Ground Water; 2005; 43(6):951-68. PubMed ID: 16324018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of fluid, heat transport to estimate desert stream infiltration.
    Kulongoski JT; Izbicki JA
    Ground Water; 2008; 46(3):462-74. PubMed ID: 18194325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability and comparison of hyporheic water temperatures and seepage fluxes in a small Atlantic salmon stream.
    Alexander MD; Caissie D
    Ground Water; 2003; 41(1):72-82. PubMed ID: 12533078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures.
    Kalbus E; Schmidt C; Bayer-Raich M; Leschik S; Reinstorf F; Balcke GU; Schirmer M
    Environ Pollut; 2007 Aug; 148(3):808-16. PubMed ID: 17399875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport and fate of nitrate at the ground-water/surface-water interface.
    Puckett LJ; Zamora C; Essaid H; Wilson JT; Johnson HM; Brayton MJ; Vogel JR
    J Environ Qual; 2008; 37(3):1034-50. PubMed ID: 18453426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an electronic seepage chamber for extended use in a river.
    Fritz BG; Mendoza DP; Gilmore TJ
    Ground Water; 2009; 47(1):136-40. PubMed ID: 18793205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delineating and quantifying ground water discharge zones using streambed temperatures.
    Conant B
    Ground Water; 2004; 42(2):243-57. PubMed ID: 15035588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stream bottom resistivity tomography to map ground water discharge.
    Nyquist JE; Freyer PA; Toran L
    Ground Water; 2008; 46(4):561-9. PubMed ID: 18373670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Darcian streambed measurements to quantify flux and mass discharge of volatile organic compounds from a contaminated aquifer to an urban stream.
    Nickels JL; Genereux DP; Knappe DRU
    J Contam Hydrol; 2023 Feb; 253():104124. PubMed ID: 36603303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-stream response to nitrate loading in three streams draining agricultural landscapes.
    Duff JH; Tesoriero AJ; Richardson WB; Strauss EA; Munn MD
    J Environ Qual; 2008; 37(3):1133-44. PubMed ID: 18453433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.
    Sebok E; Engesgaard P; Duque C
    Environ Monit Assess; 2017 Aug; 189(9):469. PubMed ID: 28840428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds.
    Landon MK; Rus DL; Harvey FE
    Ground Water; 2001; 39(6):870-85. PubMed ID: 11708453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.
    Dahan O; Tatarsky B; Enzel Y; Kulls C; Seely M; Benito G
    Ground Water; 2008; 46(3):450-61. PubMed ID: 18194313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diel changes in water chemistry in an arsenic-rich stream and treatment-pond system.
    Gammons CH; Grant TM; Nimick DA; Parker SR; DeGrandpre MD
    Sci Total Environ; 2007 Oct; 384(1-3):433-51. PubMed ID: 17662373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents.
    Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL
    Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of rapidly changing river stage on uranium flux through the hyporheic zone.
    Fritz BG; Arntzen EV
    Ground Water; 2007; 45(6):753-60. PubMed ID: 17973753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.