These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 18453743)
1. Novel insights into the structural basis of pH-sensitivity in inward rectifier K+ channels Kir2.3. Ureche ON; Baltaev R; Ureche L; Strutz-Seebohm N; Lang F; Seebohm G Cell Physiol Biochem; 2008; 21(5-6):347-56. PubMed ID: 18453743 [TBL] [Abstract][Full Text] [Related]
2. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1. Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120 [TBL] [Abstract][Full Text] [Related]
3. Regulation of inward rectifier K+ channels by shift of intracellular pH dependence. Collins A; Larson M J Cell Physiol; 2005 Jan; 202(1):76-86. PubMed ID: 15389543 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Tao X; Avalos JL; Chen J; MacKinnon R Science; 2009 Dec; 326(5960):1668-74. PubMed ID: 20019282 [TBL] [Abstract][Full Text] [Related]
5. Electrostatics in the cytoplasmic pore produce intrinsic inward rectification in kir2.1 channels. Yeh SH; Chang HK; Shieh RC J Gen Physiol; 2005 Dec; 126(6):551-62. PubMed ID: 16316974 [TBL] [Abstract][Full Text] [Related]
6. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+. Fujiwara Y; Kubo Y J Gen Physiol; 2002 Nov; 120(5):677-93. PubMed ID: 12407079 [TBL] [Abstract][Full Text] [Related]
7. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling. Dahlmann A; Li M; Gao Z; McGarrigle D; Sackin H; Palmer LG J Gen Physiol; 2004 Apr; 123(4):441-54. PubMed ID: 15051808 [TBL] [Abstract][Full Text] [Related]
8. Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. Caballero R; Dolz-Gaitón P; Gómez R; Amorós I; Barana A; González de la Fuente M; Osuna L; Duarte J; López-Izquierdo A; Moraleda I; Gálvez E; Sánchez-Chapula JA; Tamargo J; Delpón E Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15631-6. PubMed ID: 20713726 [TBL] [Abstract][Full Text] [Related]
9. K+ binding in the G-loop and water cavity facilitates Ba2+ movement in the Kir2.1 channel. Chang HK; Marton LJ; Liang KK; Shieh RC Biochim Biophys Acta; 2009 Feb; 1788(2):500-6. PubMed ID: 19026608 [TBL] [Abstract][Full Text] [Related]
10. Evidence for sequential ion-binding loci along the inner pore of the IRK1 inward-rectifier K+ channel. Shin HG; Xu Y; Lu Z J Gen Physiol; 2005 Aug; 126(2):123-35. PubMed ID: 16043774 [TBL] [Abstract][Full Text] [Related]
11. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059 [TBL] [Abstract][Full Text] [Related]
12. Effects of intra- and extracellular acidifications on single channel Kir2.3 currents. Zhu G; Chanchevalap S; Cui N; Jiang C J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):699-710. PubMed ID: 10200419 [TBL] [Abstract][Full Text] [Related]
13. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1. Fujiwara Y; Kubo Y J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of an inward rectifier channel (IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1. Correia MJ; Wood TG; Prusak D; Weng T; Rennie KJ; Wang HQ Physiol Genomics; 2004 Oct; 19(2):155-69. PubMed ID: 15316115 [TBL] [Abstract][Full Text] [Related]
16. Localization of PIP2 activation gate in inward rectifier K+ channels. Xiao J; Zhen XG; Yang J Nat Neurosci; 2003 Aug; 6(8):811-8. PubMed ID: 12858177 [TBL] [Abstract][Full Text] [Related]
17. Insights in KIR2.1 channel structure and function by an evolutionary approach; cloning and functional characterization of the first reptilian inward rectifier channel KIR2.1, derived from the California kingsnake (Lampropeltis getula californiae). Houtman MJ; Korte SM; Ji Y; Kok B; Vos MA; Stary-Weinzinger A; van der Heyden MA Biochem Biophys Res Commun; 2014 Oct; 452(4):992-7. PubMed ID: 25223803 [TBL] [Abstract][Full Text] [Related]
18. Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels. Casamassima M; D'Adamo MC; Pessia M; Tucker SJ J Biol Chem; 2003 Oct; 278(44):43533-40. PubMed ID: 12923169 [TBL] [Abstract][Full Text] [Related]
19. The effects of spermine on the accessibility of residues in the M2 segment of Kir2.1 channels expressed in Xenopus oocytes. Chang HK; Yeh SH; Shieh RC J Physiol; 2003 Nov; 553(Pt 1):101-12. PubMed ID: 12963788 [TBL] [Abstract][Full Text] [Related]
20. Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels. Chang HK; Iwamoto M; Oiki S; Shieh RC Sci Rep; 2015 Dec; 5():18404. PubMed ID: 26678093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]