BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18454936)

  • 1. The dimeric structure of the cytochrome bc(1) complex prevents center P inhibition by reverse reactions at center N.
    Covian R; Trumpower BL
    Biochim Biophys Acta; 2008; 1777(7-8):1044-52. PubMed ID: 18454936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid electron transfer between monomers when the cytochrome bc1 complex dimer is reduced through center N.
    Covian R; Trumpower BL
    J Biol Chem; 2005 Jun; 280(24):22732-40. PubMed ID: 15833742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin.
    Covian R; Trumpower BL
    Biochim Biophys Acta; 2008 Sep; 1777(9):1079-91. PubMed ID: 18471987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in cytochrome b that affect kinetics of the electron transfer reactions at center N in the yeast cytochrome bc1 complex.
    Rotsaert FA; Covian R; Trumpower BL
    Biochim Biophys Acta; 2008 Mar; 1777(3):239-49. PubMed ID: 18328328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-cooperative oxidation of ubiquinol by the yeast cytochrome bc1 complex.
    Covian R; Gutierrez-Cirlos EB; Trumpower BL
    J Biol Chem; 2004 Apr; 279(15):15040-9. PubMed ID: 14761953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional flexibility of electron flow between quinol oxidation Q
    Borek A; Ekiert R; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ilicicolin Inhibition and Binding at Center N of the Dimeric Cytochrome bc1 Complex Reveal Electron Transfer and Regulatory Interactions between Monomers.
    Covian R; Trumpower BL
    J Biol Chem; 2009 Mar; 284(13):8614-20. PubMed ID: 19176478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron sweep across four b-hemes of cytochrome bc
    Pintscher S; Pietras R; Sarewicz M; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):459-469. PubMed ID: 29596789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquinone at center N is responsible for triphasic reduction of cytochrome b in the cytochrome bc(1) complex.
    Snyder CH; Trumpower BL
    J Biol Chem; 1999 Oct; 274(44):31209-16. PubMed ID: 10531315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rate-limiting step in the cytochrome bc1 complex (Ubiquinol-Cytochrome c Oxidoreductase) is not changed by inhibition of cytochrome b-dependent deprotonation: implications for the mechanism of ubiquinol oxidation at center P of the bc1 complex.
    Covian R; Trumpower BL
    J Biol Chem; 2009 May; 284(21):14359-67. PubMed ID: 19325183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel cyanide inhibition at cytochrome c1 of Rhodobacter capsulatus cytochrome bc1.
    Osyczka A; Moser CC; Dutton PL
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):71-6. PubMed ID: 15100019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of the Q
    Song Z; Hu Y; Iorga BI; Vallières C; Fisher N; Meunier B
    Biochem Biophys Res Commun; 2020 Mar; 523(3):615-619. PubMed ID: 31941609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic activities of isolated cytochrome bc₁-like complexes containing fused cytochrome b subunits with asymmetrically inactivated segments of electron transfer chains.
    Czapla M; Borek A; Sarewicz M; Osyczka A
    Biochemistry; 2012 Jan; 51(4):829-35. PubMed ID: 22233445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory interactions between ubiquinol oxidation and ubiquinone reduction sites in the dimeric cytochrome bc1 complex.
    Covian R; Trumpower BL
    J Biol Chem; 2006 Oct; 281(41):30925-32. PubMed ID: 16908520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric and redox-specific binding of quinone and quinol at center N of the dimeric yeast cytochrome bc1 complex. Consequences for semiquinone stabilization.
    Covian R; Zwicker K; Rotsaert FA; Trumpower BL
    J Biol Chem; 2007 Aug; 282(33):24198-208. PubMed ID: 17584742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QO site deficiency can be compensated by extragenic mutations in the hinge region of the iron-sulfur protein in the bc1 complex of Saccharomyces cerevisiae.
    Brasseur G; Lemesle-Meunier D; Reinaud F; Meunier B
    J Biol Chem; 2004 Jun; 279(23):24203-11. PubMed ID: 15039445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electric field generated by photosynthetic reaction center induces rapid reversed electron transfer in the bc1 complex.
    Shinkarev VP; Crofts AR; Wraight CA
    Biochemistry; 2001 Oct; 40(42):12584-90. PubMed ID: 11601982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of cytochrome b at the ubiquinol oxidation site of yeast complex III.
    Wenz T; Covian R; Hellwig P; Macmillan F; Meunier B; Trumpower BL; Hunte C
    J Biol Chem; 2007 Feb; 282(6):3977-88. PubMed ID: 17145759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the evolutionarily conserved cytochrome b tryptophan 142 in the ubiquinol oxidation catalyzed by the bc1 complex in the yeast Saccharomyces cerevisiae.
    Bruel C; di Rago JP; Slonimski PP; Lemesle-Meunier D
    J Biol Chem; 1995 Sep; 270(38):22321-8. PubMed ID: 7673215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermonomer electron transfer in the bc1 complex dimer is controlled by the energized state and by impaired electron transfer between low and high potential hemes.
    Shinkarev VP; Wraight CA
    FEBS Lett; 2007 Apr; 581(8):1535-41. PubMed ID: 17399709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.