BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18455195)

  • 1. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations.
    Kurihara H; Ishimatsu A
    Mar Pollut Bull; 2008 Jun; 56(6):1086-90. PubMed ID: 18455195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea).
    Kurihara H; Shimode S; Shirayama Y
    Mar Pollut Bull; 2004 Nov; 49(9-10):721-7. PubMed ID: 15530515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages.
    Kikkawa T; Kita J; Ishimatsu A
    Mar Pollut Bull; 2004 Jan; 48(1-2):108-10. PubMed ID: 14725881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae).
    Pedersen SA; VĂ¥ge VT; Olsen AJ; Hammer KM; Altin D
    J Toxicol Environ Health A; 2014; 77(9-11):535-49. PubMed ID: 24754390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa.
    Krause KE; Dinh KV; Nielsen TG
    Sci Total Environ; 2017 Dec; 607-608():87-94. PubMed ID: 28688259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of elevated CO2 on the reproduction of two calanoid copepods.
    McConville K; Halsband C; Fileman ES; Somerfield PJ; Findlay HS; Spicer JI
    Mar Pollut Bull; 2013 Aug; 73(2):428-34. PubMed ID: 23490345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics.
    Raisuddin S; Kwok KW; Leung KM; Schlenk D; Lee JS
    Aquat Toxicol; 2007 Jul; 83(3):161-73. PubMed ID: 17560667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods.
    Pascal PY; Fleeger JW; Galvez F; Carman KR
    Mar Pollut Bull; 2010 Dec; 60(12):2201-8. PubMed ID: 20875652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of recruitment of Acartia pacifica nauplii from benthic resting eggs due to organochlorine pesticides.
    Jiang XD; Wang GZ; Li SJ
    J Environ Sci (China); 2006; 18(3):552-6. PubMed ID: 17294655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae.
    Stumpp M; Dupont S; Thorndyke MC; Melzner F
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):320-30. PubMed ID: 21742049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A marine secondary producer respires and feeds more in a high CO2 ocean.
    Li W; Gao K
    Mar Pollut Bull; 2012 Apr; 64(4):699-703. PubMed ID: 22364924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of acute silver toxicity in the euryhaline copepod Acartia tonsa.
    Pedroso MS; Pinho GL; Rodrigues SC; Bianchini A
    Aquat Toxicol; 2007 May; 82(3):173-80. PubMed ID: 17374407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of marine copepod outfluxes: nature, rate, fate and role in the carbon and nitrogen cycles.
    Frangoulis C; Christou ED; Hecq JH
    Adv Mar Biol; 2005; 47():253-309. PubMed ID: 15596169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ocean acidification on copepods.
    Wang M; Jeong CB; Lee YH; Lee JS
    Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction.
    Meyers MT; Cochlan WP; Carpenter EJ; Kimmerer WJ
    PLoS One; 2019; 14(5):e0217047. PubMed ID: 31107897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting points as developmental delay based on the life-history development and urosome deformity of the harpacticoid copepod, Tigriopus japonicus sensu lato, following exposure to benzo(a)pyrene.
    Bang HW; Lee W; Kwak IS
    Chemosphere; 2009 Sep; 76(10):1435-9. PubMed ID: 19560185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological effects of copper in the euryhaline copepod Acartia tonsa: waterborne versus waterborne plus dietborne exposure.
    Pinho GL; Pedroso MS; Rodrigues SC; Souza SS; Bianchini A
    Aquat Toxicol; 2007 Aug; 84(1):62-70. PubMed ID: 17659357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay.
    Stumpp M; Wren J; Melzner F; Thorndyke MC; Dupont ST
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):331-40. PubMed ID: 21742050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of some environmental parameters on the reproduction and development of a tropical marine harpacticoid copepod Nitocra affinis f. californica Lang.
    Matias-Peralta H; Yusoff FM; Shariff M; Arshad A
    Mar Pollut Bull; 2005; 51(8-12):722-8. PubMed ID: 16291188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extended probit mortality model for zooplankton against transient change of PCO(2).
    Sato T; Watanabe Y; Toyota K; Ishizaka J
    Mar Pollut Bull; 2005 Sep; 50(9):975-9. PubMed ID: 15913663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.