These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18455242)

  • 1. C5a is not involved in experimental autoimmune myasthenia gravis pathogenesis.
    Qi H; Tüzün E; Allman W; Saini SS; Penabad ZR; Pierangeli S; Christadoss P
    J Neuroimmunol; 2008 May; 196(1-2):101-6. PubMed ID: 18455242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic deficiency of estrogen receptor alpha fails to influence experimental autoimmune myasthenia gravis pathogenesis.
    Qi H; Li J; Allman W; Saini SS; Tüzün E; Wu X; Estes DM; Christadoss P
    J Neuroimmunol; 2011 May; 234(1-2):165-7. PubMed ID: 21481948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel animal models of acetylcholine receptor antibody-related myasthenia gravis.
    Tüzün E; Allman W; Ulusoy C; Yang H; Christadoss P
    Ann N Y Acad Sci; 2012 Dec; 1274():133-9. PubMed ID: 23252908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ICOS is essential for the development of experimental autoimmune myasthenia gravis.
    Scott BG; Yang H; Tüzün E; Dong C; Flavell RA; Christadoss P
    J Neuroimmunol; 2004 Aug; 153(1-2):16-25. PubMed ID: 15265659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory IgG receptor FcgammaRIIB fails to inhibit experimental autoimmune myasthenia gravis pathogenesis.
    Li J; Tüzün E; Wu XR; Qi HB; Allman W; Saini SS; Christadoss P
    J Neuroimmunol; 2008 Feb; 194(1-2):44-53. PubMed ID: 18207575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic evidence for the involvement of Fcgamma receptor III in experimental autoimmune myasthenia gravis pathogenesis.
    Tüzün E; Saini SS; Yang H; Alagappan D; Higgs S; Christadoss P
    J Neuroimmunol; 2006 May; 174(1-2):157-67. PubMed ID: 16527362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Morgan BP; Christadoss P
    J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.
    Wu X; Tuzun E; Saini SS; Wang J; Li J; Aguilera-Aguirre L; Huda R; Christadoss P
    Immunol Lett; 2015 Dec; 168(2):306-12. PubMed ID: 26493475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis.
    Tüzün E; Scott BG; Goluszko E; Higgs S; Christadoss P
    J Immunol; 2003 Oct; 171(7):3847-54. PubMed ID: 14500686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells.
    Wang W; Milani M; Ostlie N; Okita D; Agarwal RK; Caspi RR; Conti-Fine BM
    J Immunol; 2007 Jun; 178(11):7072-80. PubMed ID: 17513756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK.
    Küçükerden M; Huda R; Tüzün E; Yılmaz A; Skriapa L; Trakas N; Strait RT; Finkelman FD; Kabadayı S; Zisimopoulou P; Tzartos S; Christadoss P
    J Neuroimmunol; 2016 Jun; 295-296():84-92. PubMed ID: 27235354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD4 costimulation is not required in a novel LPS-enhanced model of myasthenia gravis.
    Allman W; Qi H; Saini SS; Li J; Tuzun E; Christadoss P
    J Neuroimmunol; 2012 Aug; 249(1-2):1-7. PubMed ID: 22626443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.
    Ulusoy C; Çavuş F; Yılmaz V; Tüzün E
    Immunol Invest; 2017 Jul; 46(5):490-499. PubMed ID: 28375749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IgG1 deficiency exacerbates experimental autoimmune myasthenia gravis in BALB/c mice.
    Huda R; Strait RT; Tüzün E; Finkelman FD; Christadoss P
    J Neuroimmunol; 2015 Apr; 281():68-72. PubMed ID: 25867470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis.
    Wang HB; Shi FD; Li H; van der Meide PH; Ljunggren HG; Link H
    Clin Immunol; 2000 May; 95(2):156-62. PubMed ID: 10779409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine receptor-induced experimental myasthenia gravis: what have we learned from animal models after three decades?
    Baggi F; Antozzi C; Toscani C; Cordiglieri C
    Arch Immunol Ther Exp (Warsz); 2012 Feb; 60(1):19-30. PubMed ID: 22159475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel complement inhibitor limits severity of experimentally myasthenia gravis.
    Soltys J; Kusner LL; Young A; Richmonds C; Hatala D; Gong B; Shanmugavel V; Kaminski HJ
    Ann Neurol; 2009 Jan; 65(1):67-75. PubMed ID: 19194881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal models of myasthenia gravis.
    Christadoss P; Poussin M; Deng C
    Clin Immunol; 2000 Feb; 94(2):75-87. PubMed ID: 10637092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production.
    Deng C; Goluszko E; Tüzün E; Yang H; Christadoss P
    J Immunol; 2002 Jul; 169(2):1077-83. PubMed ID: 12097416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complement associated pathogenic mechanisms in myasthenia gravis.
    Tüzün E; Christadoss P
    Autoimmun Rev; 2013 Jul; 12(9):904-11. PubMed ID: 23537510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.