These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A comparison of anatomy-based inverse planning with simulated annealing and graphical optimization for high-dose-rate prostate brachytherapy. Morton GC; Sankreacha R; Halina P; Loblaw A Brachytherapy; 2008; 7(1):12-6. PubMed ID: 18037356 [TBL] [Abstract][Full Text] [Related]
4. 3D inverse treatment planning for the tandem and ovoid applicator in cervical cancer. Dewitt KD; Hsu IC; Speight J; Weinberg VK; Lessard E; Pouliot J Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1270-4. PubMed ID: 16253782 [TBL] [Abstract][Full Text] [Related]
5. Urethra low-dose tunnels: validation of and class solution for generating urethra-sparing dose plans using inverse planning simulated annealing for prostate high-dose-rate brachytherapy. Cunha JA; Pouliot J; Weinberg V; Wang-Chesebro A; Roach M; Hsu IC Brachytherapy; 2012; 11(5):348-53. PubMed ID: 21937284 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of anatomy-based dwell position and inverse optimization in high-dose-rate brachytherapy of prostate cancer: a dosimetric comparison to a conventional cylindrical dwell position, geometric optimization, and dose-point optimization. Yoshioka Y; Nishimura T; Kamata M; Harada H; Kanazawa K; Fuji H; Murayama S Radiother Oncol; 2005 Jun; 75(3):311-7. PubMed ID: 15890425 [TBL] [Abstract][Full Text] [Related]
7. Inverse planning approach for 3-D MRI-based pulse-dose rate intracavitary brachytherapy in cervix cancer. Chajon E; Dumas I; Touleimat M; Magné N; Coulot J; Verstraet R; Lefkopoulos D; Haie-Meder C Int J Radiat Oncol Biol Phys; 2007 Nov; 69(3):955-61. PubMed ID: 17889277 [TBL] [Abstract][Full Text] [Related]
8. Anatomy based inverse planning in HDR prostate brachytherapy. Kolkman-Deurloo IK; Deleye XG; Jansen PP; Koper PC Radiother Oncol; 2004 Oct; 73(1):73-7. PubMed ID: 15465149 [TBL] [Abstract][Full Text] [Related]
9. Inverse planning simulated annealing for magnetic resonance imaging-based intracavitary high-dose-rate brachytherapy for cervical cancer. Kubicky CD; Yeh BM; Lessard E; Joe BN; Speight JL; Pouliot J; Hsu IC Brachytherapy; 2008; 7(3):242-7. PubMed ID: 18468959 [TBL] [Abstract][Full Text] [Related]
11. Early clinical experience with anatomy-based inverse planning dose optimization for high-dose-rate boost of the prostate. Lachance B; Béliveau-Nadeau D; Lessard E; Chrétien M; Hsu IC; Pouliot J; Beaulieu L; Vigneault E Int J Radiat Oncol Biol Phys; 2002 Sep; 54(1):86-100. PubMed ID: 12182978 [TBL] [Abstract][Full Text] [Related]
12. Inverse planning for HDR prostate brachytherapy used to boost dominant intraprostatic lesions defined by magnetic resonance spectroscopy imaging. Pouliot J; Kim Y; Lessard E; Hsu IC; Vigneron DB; Kurhanewicz J Int J Radiat Oncol Biol Phys; 2004 Jul; 59(4):1196-207. PubMed ID: 15234056 [TBL] [Abstract][Full Text] [Related]
13. Does inverse planning applied to Iridium192 high dose rate prostate brachytherapy improve the optimization of the dose afforded by the Paris system? Nickers P; Lenaerts E; Thissen B; Deneufbourg JM Radiother Oncol; 2005 Feb; 74(2):131-6. PubMed ID: 15734200 [TBL] [Abstract][Full Text] [Related]
14. Dosimetric comparison of volume-based and inverse planning simulated annealing-based dose optimizations for high-dose rate brachytherapy. Pelagade S; Maddirala HR; Misra R; Suryanarayan U; Neema JP Med Dosim; 2015; 40(3):235-9. PubMed ID: 25795565 [TBL] [Abstract][Full Text] [Related]
15. Initial comparison of inverse optimization, modified peripheral technique, and geometric optimization as real-time intraoperative computer planning options for permanent seed implantation of the prostate. Raben A; Sammons S; Sim S; Chen H; Hanlon A; Sarkar A; Donavanik V; Grebler A; Geltzeiler J; Benge B; Glick A; Jacob D; Koprowski P Brachytherapy; 2007; 6(4):238-45. PubMed ID: 17991621 [TBL] [Abstract][Full Text] [Related]
16. Favorable toxicity and biochemical control using real-time inverse optimization technique for prostate brachytherapy. Raben A; Rusthoven KE; Sarkar A; Glick A; Benge B; Jacobs D; Raben D Brachytherapy; 2009; 8(3):297-303. PubMed ID: 19213608 [TBL] [Abstract][Full Text] [Related]
17. Treatment planning for MRI assisted brachytherapy of gynecologic malignancies based on total dose constraints. Lang S; Kirisits C; Dimopoulos J; Georg D; Pötter R Int J Radiat Oncol Biol Phys; 2007 Oct; 69(2):619-27. PubMed ID: 17869676 [TBL] [Abstract][Full Text] [Related]
18. Comparison of high-dose rate prostate brachytherapy dose distributions with iridium-192, ytterbium-169, and thulium-170 sources. Krishnamurthy D; Weinberg V; Cunha JA; Hsu IC; Pouliot J Brachytherapy; 2011; 10(6):461-5. PubMed ID: 21397569 [TBL] [Abstract][Full Text] [Related]
19. Effect of planning margin on dosimetric quality in 131Cs permanent prostate brachytherapy. Li T; Fountain BL; Duffy EW Brachytherapy; 2010; 9(2):159-64. PubMed ID: 19853535 [TBL] [Abstract][Full Text] [Related]
20. Intraoperative conformal optimization for transperineal prostate implantation using magnetic resonance spectroscopic imaging. Zelefsky MJ; Cohen G; Zakian KL; Dyke J; Koutcher JA; Hricak H; Schwartz L; Zaider M Cancer J; 2000; 6(4):249-55. PubMed ID: 11038145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]