BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

653 related articles for article (PubMed ID: 18456141)

  • 1. Moment-to-force ratio, center of rotation, and force level: a finite element study predicting their interdependency for simulated orthodontic loading regimens.
    Cattaneo PM; Dalstra M; Melsen B
    Am J Orthod Dentofacial Orthop; 2008 May; 133(5):681-9. PubMed ID: 18456141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element.
    Cattaneo PM; Dalstra M; Melsen B
    Orthod Craniofac Res; 2009 May; 12(2):120-8. PubMed ID: 19419455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of canine retraction by sliding mechanics.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2005 May; 127(5):542-51. PubMed ID: 15877034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The finite element method: a tool to study orthodontic tooth movement.
    Cattaneo PM; Dalstra M; Melsen B
    J Dent Res; 2005 May; 84(5):428-33. PubMed ID: 15840778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model.
    Field C; Ichim I; Swain MV; Chan E; Darendeliler MA; Li W; Li Q
    Am J Orthod Dentofacial Orthop; 2009 Feb; 135(2):174-81. PubMed ID: 19201323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulations of canine retraction with T-loop springs based on the updated moment-to-force ratio.
    Kojima Y; Fukui H
    Eur J Orthod; 2012 Feb; 34(1):10-8. PubMed ID: 21135033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element method analysis of the periodontal ligament in mandibular canine movement with transparent tooth correction treatment.
    Cai Y; Yang X; He B; Yao J
    BMC Oral Health; 2015 Sep; 15():106. PubMed ID: 26337291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: a finite element case study.
    Liao Z; Chen J; Li W; Darendeliler MA; Swain M; Li Q
    Arch Oral Biol; 2016 Jun; 66():98-107. PubMed ID: 26943815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The adaptive response of periodontal ligament to orthodontic force loading - a combined biomechanical and biological study.
    Zhao Z; Fan Y; Bai D; Wang J; Li Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S59-66. PubMed ID: 18078696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics.
    Kojima Y; Kawamura J; Fukui H
    Am J Orthod Dentofacial Orthop; 2012 Oct; 142(4):501-8. PubMed ID: 22999674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial stress differences between sliding and sectional mechanics with an endosseous implant as anchorage: a 3-dimensional finite element analysis.
    Vásquez M; Calao E; Becerra F; Ossa J; Enríquez C; Fresneda E
    Angle Orthod; 2001 Aug; 71(4):247-56. PubMed ID: 11510633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement.
    Ammar HH; Ngan P; Crout RJ; Mucino VH; Mukdadi OM
    Am J Orthod Dentofacial Orthop; 2011 Jan; 139(1):e59-71. PubMed ID: 21195258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method.
    Dorow C; Sander FG
    J Orofac Orthop; 2005 May; 66(3):208-18. PubMed ID: 15959634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical environment change in root, periodontal ligament, and alveolar bone in response to two canine retraction treatment strategies.
    Jiang F; Xia Z; Li S; Eckert G; Chen J
    Orthod Craniofac Res; 2015 Apr; 18 Suppl 1(0 1):29-38. PubMed ID: 25865531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative evaluation of different compensating curves in the lingual and labial techniques using 3D FEM.
    Sung SJ; Baik HS; Moon YS; Yu HS; Cho YS
    Am J Orthod Dentofacial Orthop; 2003 Apr; 123(4):441-50. PubMed ID: 12695772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A numerical simulation of tooth movement produced by molar uprighting spring.
    Kojima Y; Mizuno T; Fukui H
    Am J Orthod Dentofacial Orthop; 2007 Nov; 132(5):630-8. PubMed ID: 18005837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numeric simulations of en-masse space closure with sliding mechanics.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2010 Dec; 138(6):702.e1-6; discussion 702-4. PubMed ID: 21130318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Three-dimensional finite element analysis of maxillary canine during the tooth translation movement].
    Bai D; Cheng BH; Luo SJ; Lü T
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2004 May; 35(3):358-60. PubMed ID: 15181835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [FEM study on displacement, position of rotation center and stress distribution of PDL under various loading force systems].
    Liu DX; Wang CL; Fu CY; Zhang XY; Zheng XZ
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2004 Jun; 22(3):192-5. PubMed ID: 15293461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of effective intrusion and extrusion force for maxillary canine using finite element analysis.
    Wu J; Liu Y; Wang D; Zhang J; Dong X; Jiang X; Xu X
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1294-1302. PubMed ID: 31553278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.