These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 18456803)
1. Transcription factors CysB and SfnR constitute the hierarchical regulatory system for the sulfate starvation response in Pseudomonas putida. Kouzuma A; Endoh T; Omori T; Nojiri H; Yamane H; Habe H J Bacteriol; 2008 Jul; 190(13):4521-31. PubMed ID: 18456803 [TBL] [Abstract][Full Text] [Related]
2. A CysB-regulated and sigma54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1. Endoh T; Habe H; Yoshida T; Nojiri H; Omori T Microbiology (Reading); 2003 Apr; 149(Pt 4):991-1000. PubMed ID: 12686641 [TBL] [Abstract][Full Text] [Related]
3. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Endoh T; Habe H; Nojiri H; Yamane H; Omori T Mol Microbiol; 2005 Feb; 55(3):897-911. PubMed ID: 15661012 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional regulation of the sulfate-starvation-induced gene sfnA by a sigma54-dependent activator of Pseudomonas putida. Habe H; Kouzuma A; Endoh T; Omori T; Yamane H; Nojiri H Microbiology (Reading); 2007 Sep; 153(Pt 9):3091-3098. PubMed ID: 17768252 [TBL] [Abstract][Full Text] [Related]
5. Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. van der Ploeg JR; Iwanicka-Nowicka R; Kertesz MA; Leisinger T; Hryniewicz MM J Bacteriol; 1997 Dec; 179(24):7671-8. PubMed ID: 9401024 [TBL] [Abstract][Full Text] [Related]
6. The LysR-type transcriptional regulator CysB controls the repression of hslJ transcription in Escherichia coli. Jovanovic M; Lilic M; Savic DJ; Jovanovic G Microbiology (Reading); 2003 Dec; 149(Pt 12):3449-3459. PubMed ID: 14663078 [TBL] [Abstract][Full Text] [Related]
7. Aromatic effector activation of the NtrC-like transcriptional regulator PhhR limits the catabolic potential of the (methyl)phenol degradative pathway it controls. Ng LC; Poh CL; Shingler V J Bacteriol; 1995 Mar; 177(6):1485-90. PubMed ID: 7883704 [TBL] [Abstract][Full Text] [Related]
8. Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida. Marqués S; Gallegos MT; Manzanera M; Holtel A; Timmis KN; Ramos JL J Bacteriol; 1998 Jun; 180(11):2889-94. PubMed ID: 9603877 [TBL] [Abstract][Full Text] [Related]
9. Regulation of sulfur assimilation pathways in Burkholderia cenocepacia: identification of transcription factors CysB and SsuR and their role in control of target genes. Iwanicka-Nowicka R; Zielak A; Cook AM; Thomas MS; Hryniewicz MM J Bacteriol; 2007 Mar; 189(5):1675-88. PubMed ID: 16997956 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. McFall SM; Chugani SA; Chakrabarty AM Gene; 1998 Nov; 223(1-2):257-67. PubMed ID: 9858745 [TBL] [Abstract][Full Text] [Related]
11. The ptsP gene encoding the PTS family protein EI(Ntr) is essential for dimethyl sulfone utilization by Pseudomonas putida. Kouzuma A; Endoh T; Omori T; Nojiri H; Yamane H; Habe H FEMS Microbiol Lett; 2007 Oct; 275(1):175-81. PubMed ID: 17711452 [TBL] [Abstract][Full Text] [Related]
12. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida. Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413 [TBL] [Abstract][Full Text] [Related]
13. TfdR, the LysR-type transcriptional activator, is responsible for the activation of the tfdCB operon of Pseudomonas putida 2, 4-dichlorophenoxyacetic acid degradative plasmid pEST4011. Vedler E; Kõiv V; Heinaru A Gene; 2000 Mar; 245(1):161-8. PubMed ID: 10713456 [TBL] [Abstract][Full Text] [Related]
14. Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1. Endoh T; Kasuga K; Horinouchi M; Yoshida T; Habe H; Nojiri H; Omori T Appl Microbiol Biotechnol; 2003 Jul; 62(1):83-91. PubMed ID: 12835925 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional control of the multiple catabolic pathways encoded on the TOL plasmid pWW53 of Pseudomonas putida MT53. Gallegos MT; Williams PA; Ramos JL J Bacteriol; 1997 Aug; 179(16):5024-9. PubMed ID: 9260942 [TBL] [Abstract][Full Text] [Related]
16. Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. Lacal J; Guazzaroni ME; Busch A; Krell T; Ramos JL J Mol Biol; 2008 Feb; 376(2):325-37. PubMed ID: 18166197 [TBL] [Abstract][Full Text] [Related]
17. Purification of the LysR family regulator, ClcR, and its interaction with the Pseudomonas putida clcABD chlorocatechol operon promoter. Coco WM; Parsek MR; Chakrabarty AM J Bacteriol; 1994 Sep; 176(17):5530-3. PubMed ID: 8071232 [TBL] [Abstract][Full Text] [Related]
18. The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. Hryniewicz MM; Kredich NM J Bacteriol; 1991 Sep; 173(18):5876-86. PubMed ID: 1909324 [TBL] [Abstract][Full Text] [Related]
19. CysB Negatively Affects the Transcription of pqsR and Pseudomonas Quinolone Signal Production in Pseudomonas aeruginosa. Farrow JM; Hudson LL; Wells G; Coleman JP; Pesci EC J Bacteriol; 2015 Jun; 197(12):1988-2002. PubMed ID: 25845844 [TBL] [Abstract][Full Text] [Related]
20. Protein binding in vivo to OP2 promoter of the Pseudomonas putida TOL plasmid. Miura K; Inouye S; Nakazawa A Biochem Mol Biol Int; 1998 Dec; 46(5):933-41. PubMed ID: 9861447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]