These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18456892)

  • 1. Synaptic transmission in neurons that express the Drosophila atypical soluble guanylyl cyclases, Gyc-89Da and Gyc-89Db, is necessary for the successful completion of larval and adult ecdysis.
    Morton DB; Stewart JA; Langlais KK; Clemens-Grisham RA; Vermehren A
    J Exp Biol; 2008 May; 211(Pt 10):1645-56. PubMed ID: 18456892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases.
    Vermehren-Schmaedick A; Ainsley JA; Johnson WA; Davies SA; Morton DB
    Genetics; 2010 Sep; 186(1):183-96. PubMed ID: 20592263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the properties of the five soluble guanylyl cyclase subunits in Drosophila melanogaster.
    Morton DB; Langlais KK; Stewart JA; Vermehren A
    J Insect Sci; 2005; 5():12. PubMed ID: 16341244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atypical soluble guanylyl cyclases in Drosophila can function as molecular oxygen sensors.
    Morton DB
    J Biol Chem; 2004 Dec; 279(49):50651-3. PubMed ID: 15485853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary characterization of two atypical soluble guanylyl cyclases in the central and peripheral nervous system of Drosophila melanogaster.
    Langlais KK; Stewart JA; Morton DB
    J Exp Biol; 2004 Jun; 207(Pt 13):2323-38. PubMed ID: 15159437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila gustatory preference behaviors require the atypical soluble guanylyl cyclases.
    Vermehren-Schmaedick A; Scudder C; Timmermans W; Morton DB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jul; 197(7):717-27. PubMed ID: 21350862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen-sensitive guanylyl cyclases in insects and their potential roles in oxygen detection and in feeding behaviors.
    Vermehren A; Langlais KK; Morton DB
    J Insect Physiol; 2006 Apr; 52(4):340-8. PubMed ID: 16427074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic activity in serotonergic neurons is required for air-puff stimulated flight in Drosophila melanogaster.
    Sadaf S; Birman S; Hasan G
    PLoS One; 2012; 7(9):e46405. PubMed ID: 23029511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrograde BMP signaling controls Drosophila behavior through regulation of a peptide hormone battery.
    Veverytsa L; Allan DW
    Development; 2011 Aug; 138(15):3147-57. PubMed ID: 21750027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand binding and inhibition of an oxygen-sensitive soluble guanylate cyclase, Gyc-88E, from Drosophila.
    Huang SH; Rio DC; Marletta MA
    Biochemistry; 2007 Dec; 46(51):15115-22. PubMed ID: 18044974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eclosion gates progression of the adult ecdysis sequence of Drosophila.
    Peabody NC; White BH
    J Exp Biol; 2013 Dec; 216(Pt 23):4395-402. PubMed ID: 24031052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior.
    Park JH; Schroeder AJ; Helfrich-Förster C; Jackson FR; Ewer J
    Development; 2003 Jun; 130(12):2645-56. PubMed ID: 12736209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smell and taste perception in Drosophila melanogaster larva: toxin expression studies in chemosensory neurons.
    Heimbeck G; Bugnon V; Gendre N; Häberlin C; Stocker RF
    J Neurosci; 1999 Aug; 19(15):6599-609. PubMed ID: 10414987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The essential role of bursicon during Drosophila development.
    Loveall BJ; Deitcher DL
    BMC Dev Biol; 2010 Aug; 10():92. PubMed ID: 20807433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroendocrine control of larval ecdysis behavior in Drosophila: complex regulation by partially redundant neuropeptides.
    Clark AC; del Campo ML; Ewer J
    J Neurosci; 2004 Apr; 24(17):4283-92. PubMed ID: 15115824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of Eclosion hormone action during Drosophila larval ecdysis.
    Krüger E; Mena W; Lahr EC; Johnson EC; Ewer J
    Development; 2015 Dec; 142(24):4279-87. PubMed ID: 26395475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporally tuned neuronal differentiation supports the functional remodeling of a neuronal network in Drosophila.
    Veverytsa L; Allan DW
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):E748-56. PubMed ID: 22393011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of endocrine signals that regulate insect ecdysis.
    Mesce KA; Fahrbach SE
    Front Neuroendocrinol; 2002 Apr; 23(2):179-99. PubMed ID: 11950244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hormonal coordination of behavior and physiology at adult ecdysis in Drosophila melanogaster.
    Baker JD; McNabb SL; Truman JW
    J Exp Biol; 1999 Nov; 202(Pt 21):3037-48. PubMed ID: 10518485
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Simon E; de la Puebla SF; Guerrero I
    Open Biol; 2019 Dec; 9(12):190245. PubMed ID: 31847787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.