BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18456895)

  • 1. Size matters: diversity in swimbladders and Weberian ossicles affects hearing in catfishes.
    Lechner W; Ladich F
    J Exp Biol; 2008 May; 211(Pt 10):1681-9. PubMed ID: 18456895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peripheral Hearing Structures in Fishes: Diversity and Sensitivity of Catfishes and Cichlids.
    Ladich F
    Adv Exp Med Biol; 2016; 877():321-40. PubMed ID: 26515321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogenetic development of weberian ossicles and hearing abilities in the African bullhead catfish.
    Lechner W; Heiss E; Schwaha T; Glösmann M; Ladich F
    PLoS One; 2011 Apr; 6(4):e18511. PubMed ID: 21533262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the hearing sensitivity in thorny catfishes depend on swim bladder morphology?
    Zebedin A; Ladich F
    PLoS One; 2013; 8(6):e67049. PubMed ID: 23825615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic communication and the evolution of hearing in fishes.
    Ladich F
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1285-8. PubMed ID: 11079416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni.
    Lechner W; Wysocki LE; Ladich F
    BMC Biol; 2010 Jan; 8():10. PubMed ID: 20113466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the acoustically evoked behavioral response in zebrafish to pure tones.
    Zeddies DG; Fay RR
    J Exp Biol; 2005 Apr; 208(Pt 7):1363-72. PubMed ID: 15781896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound-generating and -detecting motor system in catfish: design of swimbladder muscles in doradids and pimelodids.
    Ladich F
    Anat Rec; 2001 Jul; 263(3):297-306. PubMed ID: 11455539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic Sea.
    Wysocki LE; Codarin A; Ladich F; Picciulin M
    J Acoust Soc Am; 2009 Oct; 126(4):2100-7. PubMed ID: 19813819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Did auditory sensitivity and vocalization evolve independently in otophysan fishes?
    Ladich F
    Brain Behav Evol; 1999; 53(5-6):288-304. PubMed ID: 10473905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How does tripus extirpation affect auditory sensitivity in goldfish?
    Ladich F; Wysocki LE
    Hear Res; 2003 Aug; 182(1-2):119-29. PubMed ID: 12948607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of ambient temperature and thermal acclimation on hearing in a eurythermal and a stenothermal otophysan fish.
    Wysocki LE; Montey K; Popper AN
    J Exp Biol; 2009 Oct; 212(19):3091-9. PubMed ID: 19749101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between swim bladder morphology and hearing abilities--a case study on Asian and African cichlids.
    Schulz-Mirbach T; Metscher B; Ladich F
    PLoS One; 2012; 7(8):e42292. PubMed ID: 22879934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound production and spectral hearing sensitivity in the Hawaiian sergeant damselfish, Abudefduf abdominalis.
    Maruska KP; Boyle KS; Dewan LR; Tricas TC
    J Exp Biol; 2007 Nov; 210(Pt 22):3990-4004. PubMed ID: 17981867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory steady-state responses to bone conduction stimuli in children with hearing loss.
    Swanepoel de W; Ebrahim S; Friedland P; Swanepoel A; Pottas L
    Int J Pediatr Otorhinolaryngol; 2008 Dec; 72(12):1861-71. PubMed ID: 18963045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure and particle motion detection thresholds in fish: a re-examination of salient auditory cues in teleosts.
    Radford CA; Montgomery JC; Caiger P; Higgs DM
    J Exp Biol; 2012 Oct; 215(Pt 19):3429-35. PubMed ID: 22693030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological variation in the Weberian apparatus of Cypriniformes.
    Bird NC; Hernandez LP
    J Morphol; 2007 Sep; 268(9):739-57. PubMed ID: 17591731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inner ear morphology and hearing abilities of the Paddlefish (Polyodon spathula) and the Lake Sturgeon (Acipenser fulvescens).
    Lovell JM; Findlay MM; Moate RM; Nedwell JR; Pegg MA
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Nov; 142(3):286-96. PubMed ID: 16183310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative size variation of the otoliths, swim bladder, and Weberian apparatus structures in piranhas and pacus (Characiformes: Serrasalmidae) with different ecologies and its implications for the detection of sound stimuli.
    Boyle KS; Herrel A
    J Morphol; 2018 Dec; 279(12):1849-1871. PubMed ID: 30443931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic pressure and particle motion thresholds in six sciaenid fishes.
    Horodysky AZ; Brill RW; Fine ML; Musick JA; Latour RJ
    J Exp Biol; 2008 May; 211(Pt 9):1504-11. PubMed ID: 18424685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.