These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18457387)

  • 1. Scaffold hopping in drug discovery using inductive logic programming.
    Tsunoyama K; Amini A; Sternberg MJ; Muggleton SH
    J Chem Inf Model; 2008 May; 48(5):949-57. PubMed ID: 18457387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel logic-based approach for quantitative toxicology prediction.
    Amini A; Muggleton SH; Lodhi H; Sternberg MJ
    J Chem Inf Model; 2007; 47(3):998-1006. PubMed ID: 17451225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The discovery of indicator variables for QSAR using inductive logic programming.
    King RD; Srinivasan A
    J Comput Aided Mol Des; 1997 Nov; 11(6):571-80. PubMed ID: 9491349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual screening and scaffold hopping based on GRID molecular interaction fields.
    Ahlström MM; Ridderström M; Luthman K; Zamora I
    J Chem Inf Model; 2005; 45(5):1313-23. PubMed ID: 16180908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Scaffold Hopping.
    Hu Y; Stumpfe D; Bajorath J
    J Med Chem; 2017 Feb; 60(4):1238-1246. PubMed ID: 28001064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.
    Amini A; Shrimpton PJ; Muggleton SH; Sternberg MJ
    Proteins; 2007 Dec; 69(4):823-31. PubMed ID: 17910057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase B inhibitors.
    Marchand-Geneste N; Watson KA; Alsberg BK; King RD
    J Med Chem; 2002 Jan; 45(2):399-409. PubMed ID: 11784144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.
    Stumpfe D; Dimova D; Bajorath J
    Bioorg Med Chem; 2015 Jul; 23(13):3183-91. PubMed ID: 25982076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering H-bonding rules in crystals with inductive logic programming.
    Ando HY; Dehaspe L; Luyten W; Van Craenenbroeck E; Vandecasteele H; Van Meervelt L
    Mol Pharm; 2006; 3(6):665-74. PubMed ID: 17140254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is scaffold hopping a reliable indicator for the ability of computational methods to identify structurally diverse active compounds?
    Dimova D; Bajorath J
    J Comput Aided Mol Des; 2017 Jul; 31(7):603-608. PubMed ID: 28623485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating protein three-dimensional fold signatures using inductive logic programming.
    Turcotte M; Muggleton SH; Sternberg MJ
    Comput Chem; 2001 Dec; 26(1):57-64. PubMed ID: 11765853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds.
    Cannon EO; Amini A; Bender A; Sternberg MJ; Muggleton SH; Glen RC; Mitchell JB
    J Comput Aided Mol Des; 2007 May; 21(5):269-80. PubMed ID: 17387437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study.
    A Santos JC; Nassif H; Page D; Muggleton SH; E Sternberg MJ
    BMC Bioinformatics; 2012 Jul; 13():162. PubMed ID: 22783946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic inference of indexing rules for MEDLINE.
    Névéol A; Shooshan SE; Claveau V
    BMC Bioinformatics; 2008 Nov; 9 Suppl 11(Suppl 11):S11. PubMed ID: 19025687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On scaffolds and hopping in medicinal chemistry.
    Brown N; Jacoby E
    Mini Rev Med Chem; 2006 Nov; 6(11):1217-29. PubMed ID: 17100633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for effective virtual screening and scaffold-hopping in chemical compounds.
    Wale N; Karypis G; Watson IA
    Comput Syst Bioinformatics Conf; 2007; 6():403-14. PubMed ID: 17951843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting cancer using scaffold-hopping approaches: illuminating SAR to improve drug design.
    Shivani ; Abdul Rahaman TA; Chaudhary S
    Drug Discov Today; 2024 Sep; 29(9):104115. PubMed ID: 39067613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic assessment of scaffold distances in ChEMBL: prioritization of compound data sets for scaffold hopping analysis in virtual screening.
    Li R; Bajorath J
    J Comput Aided Mol Des; 2012 Oct; 26(10):1101-9. PubMed ID: 22972561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the Growth of Bioactive Compounds and Scaffolds over Time: Implications for Lead Discovery and Scaffold Hopping.
    Jasial S; Hu Y; Bajorath J
    J Chem Inf Model; 2016 Feb; 56(2):300-7. PubMed ID: 26838127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised 3D ring template searching as an ideas generator for scaffold hopping: use of the LAMDA, RigFit, and field-based similarity search (FBSS) methods.
    Bohl M; Loeprecht B; Wendt B; Heritage T; Richmond NJ; Willett P
    J Chem Inf Model; 2006; 46(5):1882-90. PubMed ID: 16995717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.