BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 18457900)

  • 21. Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats.
    Chapman AB; Agabian N
    J Biol Chem; 1994 Feb; 269(7):4754-60. PubMed ID: 8106443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural determinants for accurate dephosphorylation of RNA polymerase II by its cognate C-terminal domain (CTD) phosphatase during eukaryotic transcription.
    Irani S; Sipe SN; Yang W; Burkholder NT; Lin B; Sim K; Matthews WL; Brodbelt JS; Zhang Y
    J Biol Chem; 2019 May; 294(21):8592-8605. PubMed ID: 30971428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code.
    Heidemann M; Eick D
    RNA Biol; 2012 Sep; 9(9):1144-6. PubMed ID: 22960391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors.
    Meinhart A; Cramer P
    Nature; 2004 Jul; 430(6996):223-6. PubMed ID: 15241417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation.
    Liu P; Greenleaf AL; Stiller JW
    Mol Biol Evol; 2008 Apr; 25(4):719-27. PubMed ID: 18209193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA polymerase II carboxy-terminal domain with multiple connections.
    Cho EJ
    Exp Mol Med; 2007 Jun; 39(3):247-54. PubMed ID: 17603278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD.
    Emili A; Shales M; McCracken S; Xie W; Tucker PW; Kobayashi R; Blencowe BJ; Ingles CJ
    RNA; 2002 Sep; 8(9):1102-11. PubMed ID: 12358429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crosstalk between RNA Pol II C-Terminal Domain Acetylation and Phosphorylation via RPRD Proteins.
    Ali I; Ruiz DG; Ni Z; Johnson JR; Zhang H; Li PC; Khalid MM; Conrad RJ; Guo X; Min J; Greenblatt J; Jacobson M; Krogan NJ; Ott M
    Mol Cell; 2019 Jun; 74(6):1164-1174.e4. PubMed ID: 31054975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain.
    Pineda G; Shen Z; de Albuquerque CP; Reynoso E; Chen J; Tu CC; Tang W; Briggs S; Zhou H; Wang JY
    BMC Res Notes; 2015 Oct; 8():616. PubMed ID: 26515650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insight into recognition of phosphorylated threonine-4 of RNA polymerase II C-terminal domain by Rtt103p.
    Jasnovidova O; Krejcikova M; Kubicek K; Stefl R
    EMBO Rep; 2017 Jun; 18(6):906-913. PubMed ID: 28468956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Ser7 of RNA Pol II-CTD influences the recruitment of Cdc73 for mRNA transcription.
    Gupta A; Kumar A; Singh N; Patel M; Studitsky VM; Zhang KYJ; Akhtar MS
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127881. PubMed ID: 37944716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes.
    Doamekpor SK; Sanchez AM; Schwer B; Shuman S; Lima CD
    Genes Dev; 2014 Jun; 28(12):1323-36. PubMed ID: 24939935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3'-end cleavage.
    Rosonina E; Blencowe BJ
    RNA; 2004 Apr; 10(4):581-9. PubMed ID: 15037767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene-specific RNA polymerase II phosphorylation and the CTD code.
    Kim H; Erickson B; Luo W; Seward D; Graber JH; Pollock DD; Megee PC; Bentley DL
    Nat Struct Mol Biol; 2010 Oct; 17(10):1279-86. PubMed ID: 20835241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain.
    Lunde BM; Reichow SL; Kim M; Suh H; Leeper TC; Yang F; Mutschler H; Buratowski S; Meinhart A; Varani G
    Nat Struct Mol Biol; 2010 Oct; 17(10):1195-201. PubMed ID: 20818393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast.
    Inada M; Nichols RJ; Parsa JY; Homer CM; Benn RA; Hoxie RS; Madhani HD; Shuman S; Schwer B; Pleiss JA
    Nucleic Acids Res; 2016 Nov; 44(19):9180-9189. PubMed ID: 27402158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cdc15 Phosphorylates the C-terminal Domain of RNA Polymerase II for Transcription during Mitosis.
    Singh AK; Rastogi S; Shukla H; Asalam M; Rath SK; Akhtar MS
    J Biol Chem; 2017 Mar; 292(13):5507-5518. PubMed ID: 28202544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of the RNA polymerase II C-terminal domain.
    Stiller JW; Hall BD
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6091-6. PubMed ID: 11972039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition.
    Czudnochowski N; Bösken CA; Geyer M
    Nat Commun; 2012 May; 3():842. PubMed ID: 22588304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RPRD1A and RPRD1B are human RNA polymerase II C-terminal domain scaffolds for Ser5 dephosphorylation.
    Ni Z; Xu C; Guo X; Hunter GO; Kuznetsova OV; Tempel W; Marcon E; Zhong G; Guo H; Kuo WW; Li J; Young P; Olsen JB; Wan C; Loppnau P; El Bakkouri M; Senisterra GA; He H; Huang H; Sidhu SS; Emili A; Murphy S; Mosley AL; Arrowsmith CH; Min J; Greenblatt JF
    Nat Struct Mol Biol; 2014 Aug; 21(8):686-695. PubMed ID: 24997600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.