These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 18458064)
1. Application of capillary electrophoresis mass spectrometry and liquid chromatography multiple-step tandem electrospray mass spectrometry to profile glycoform expression during Haemophilus influenzae pathogenesis in the chinchilla model of experimental otitis media. Lundström SL; Li J; Månsson M; Figueira M; Leroy M; Goldstein R; Hood DW; Moxon ER; Richards JC; Schweda EK Infect Immun; 2008 Jul; 76(7):3255-67. PubMed ID: 18458064 [TBL] [Abstract][Full Text] [Related]
2. Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Bouchet V; Hood DW; Li J; Brisson JR; Randle GA; Martin A; Li Z; Goldstein R; Schweda EK; Pelton SI; Richards JC; Moxon ER Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8898-903. PubMed ID: 12855765 [TBL] [Abstract][Full Text] [Related]
3. Structural profiling of lipopolysaccharide glycoforms expressed by non-typeable Haemophilus influenzae: phenotypic similarities between NTHi strain 162 and the genome strain Rd. Schweda EK; Landerholm MK; Li J; Richard Moxon E; Richards JC Carbohydr Res; 2003 Nov; 338(23):2731-44. PubMed ID: 14670731 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylcholine decreases early inflammation and promotes the establishment of stable biofilm communities of nontypeable Haemophilus influenzae strain 86-028NP in a chinchilla model of otitis media. Hong W; Mason K; Jurcisek J; Novotny L; Bakaletz LO; Swords WE Infect Immun; 2007 Feb; 75(2):958-65. PubMed ID: 17130253 [TBL] [Abstract][Full Text] [Related]
5. Profiling structural elements of short-chain lipopolysaccharide of non-typeable Haemophilus influenzae. Schweda EK; Twelkmeyer B; Li J Innate Immun; 2008 Aug; 14(4):199-211. PubMed ID: 18669606 [TBL] [Abstract][Full Text] [Related]
6. Profiling LPS glycoforms of non-typeable Haemophilus influenzae by multiple-stage tandem mass spectrometry. Schweda EK; Richards JC Methods Mol Biol; 2010; 600():79-92. PubMed ID: 19882122 [TBL] [Abstract][Full Text] [Related]
7. Virulence phenotypes of low-passage clinical isolates of nontypeable Haemophilus influenzae assessed using the chinchilla laniger model of otitis media. Buchinsky FJ; Forbes ML; Hayes JD; Shen K; Ezzo S; Compliment J; Hogg J; Hiller NL; Hu FZ; Post JC; Ehrlich GD BMC Microbiol; 2007 Jun; 7():56. PubMed ID: 17570853 [TBL] [Abstract][Full Text] [Related]
8. Electrophoretic and mass spectrometric strategies for profiling bacterial lipopolysaccharides. Li J; Cox AD; Hood DW; Schweda EK; Moxon ER; Richards JC Mol Biosyst; 2005 May; 1(1):46-52. PubMed ID: 16880962 [TBL] [Abstract][Full Text] [Related]
9. Characterization of novel structural features in the lipopolysaccharide of nondisease associated nontypeable Haemophilus influenzae. Landerholm MK; Li J; Richards JC; Hood DW; Moxon ER; Schweda EK Eur J Biochem; 2004 Mar; 271(5):941-53. PubMed ID: 15009206 [TBL] [Abstract][Full Text] [Related]
10. Multiple consecutive lavage samplings reveal greater burden of disease and provide direct access to the nontypeable Haemophilus influenzae biofilm in experimental otitis media. Leroy M; Cabral H; Figueira M; Bouchet V; Huot H; Ram S; Pelton SI; Goldstein R Infect Immun; 2007 Aug; 75(8):4158-72. PubMed ID: 17517860 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment. Harrison A; Dubois LG; St John-Williams L; Moseley MA; Hardison RL; Heimlich DR; Stoddard A; Kerschner JE; Justice SS; Thompson JW; Mason KM Mol Cell Proteomics; 2016 Mar; 15(3):1117-38. PubMed ID: 26711468 [TBL] [Abstract][Full Text] [Related]
12. Coupling capillary electrophoresis and high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of complex lipopolysaccharides. Li J; Purves RW; Richards JC Anal Chem; 2004 Aug; 76(16):4676-83. PubMed ID: 15307776 [TBL] [Abstract][Full Text] [Related]
14. Survival of bacterial biofilms within neutrophil extracellular traps promotes nontypeable Haemophilus influenzae persistence in the chinchilla model for otitis media. Hong W; Juneau RA; Pang B; Swords WE J Innate Immun; 2009; 1(3):215-24. PubMed ID: 20375579 [TBL] [Abstract][Full Text] [Related]
15. The structural diversity of lipopolysaccharide expressed by non-typeable Haemophilus influenzae strains 1158 and 1159. Vitiazeva V; Li J; Hood DW; Richard Moxon E; Schweda EK Carbohydr Res; 2012 Aug; 357():98-110. PubMed ID: 22705099 [TBL] [Abstract][Full Text] [Related]
16. A functional tonB gene is required for both virulence and competitive fitness in a chinchilla model of Haemophilus influenzae otitis media. Morton DJ; Hempel RJ; Seale TW; Whitby PW; Stull TL BMC Res Notes; 2012 Jun; 5():327. PubMed ID: 22731867 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effect of adenovirus type 1 and nontypeable Haemophilus influenzae in a chinchilla model of experimental otitis media. Suzuki K; Bakaletz LO Infect Immun; 1994 May; 62(5):1710-8. PubMed ID: 8168932 [TBL] [Abstract][Full Text] [Related]
18. ModA2 Phasevarion Switching in Nontypeable Haemophilus influenzae Increases the Severity of Experimental Otitis Media. Brockman KL; Jurcisek JA; Atack JM; Srikhanta YN; Jennings MP; Bakaletz LO J Infect Dis; 2016 Sep; 214(5):817-24. PubMed ID: 27288538 [TBL] [Abstract][Full Text] [Related]
19. Identification of a bifunctional lipopolysaccharide sialyltransferase in Haemophilus influenzae: incorporation of disialic acid. Fox KL; Cox AD; Gilbert M; Wakarchuk WW; Li J; Makepeace K; Richards JC; Moxon ER; Hood DW J Biol Chem; 2006 Dec; 281(52):40024-32. PubMed ID: 17071616 [TBL] [Abstract][Full Text] [Related]
20. Phase variation with altering phosphorylcholine expression of nontypeable Haemophilus influenzae affects bacteria clearance and mucosal immune response in the middle ear and nasopharynx. Kadowaki Y; Hirano T; Fujita K; Kawano T; Matsunaga T; Yoshinaga K; Suzuki M Auris Nasus Larynx; 2021 Feb; 48(1):57-64. PubMed ID: 32684402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]