These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

948 related articles for article (PubMed ID: 18458348)

  • 21. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States.
    Pyne MI; Poff NL
    Glob Chang Biol; 2017 Jan; 23(1):77-93. PubMed ID: 27429092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming.
    Kearney M; Shine R; Porter WP
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3835-40. PubMed ID: 19234117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vulnerability to climate change increases with trophic level in terrestrial organisms.
    da Silva CRB; Beaman JE; Youngblood JP; Kellermann V; Diamond SE
    Sci Total Environ; 2023 Mar; 865():161049. PubMed ID: 36549538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Basal resistance enhances warming tolerance of alien over indigenous species across latitude.
    Janion-Scheepers C; Phillips L; Sgrò CM; Duffy GA; Hallas R; Chown SL
    Proc Natl Acad Sci U S A; 2018 Jan; 115(1):145-150. PubMed ID: 29255020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Species interactions under climate change: connecting kinetic effects of temperature on individuals to community dynamics.
    Boukal DS; Bideault A; Carreira BM; Sentis A
    Curr Opin Insect Sci; 2019 Oct; 35():88-95. PubMed ID: 31445412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coping with temperature at the warm edge--patterns of thermal adaptation in the microbial eukaryote Paramecium caudatum.
    Krenek S; Petzoldt T; Berendonk TU
    PLoS One; 2012; 7(3):e30598. PubMed ID: 22427799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responses of arthropod populations to warming depend on latitude: evidence from urban heat islands.
    Youngsteadt E; Ernst AF; Dunn RR; Frank SD
    Glob Chang Biol; 2017 Apr; 23(4):1436-1447. PubMed ID: 27809387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress.
    Mi C; Ma L; Wang Y; Wu D; Du W; Sun B
    Proc Biol Sci; 2022 Aug; 289(1980):20221074. PubMed ID: 35946157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global analysis of thermal tolerance and latitude in ectotherms.
    Sunday JM; Bates AE; Dulvy NK
    Proc Biol Sci; 2011 Jun; 278(1713):1823-30. PubMed ID: 21106582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A framework for elucidating the temperature dependence of fitness.
    Amarasekare P; Savage V
    Am Nat; 2012 Feb; 179(2):178-91. PubMed ID: 22218308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An alternative explanation for global trends in thermal tolerance.
    Payne NL; Smith JA
    Ecol Lett; 2017 Jan; 20(1):70-77. PubMed ID: 27905195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Niche width predicts extinction from climate change and vulnerability of tropical species.
    Grinder RM; Wiens JJ
    Glob Chang Biol; 2023 Feb; 29(3):618-630. PubMed ID: 36260367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure.
    Sheldon KS; Yang S; Tewksbury JJ
    Ecol Lett; 2011 Dec; 14(12):1191-200. PubMed ID: 21978234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potentially Extreme Population Displacement and Concentration in the Tropics Under Non-Extreme Warming.
    Hsiang SM; Sobel AH
    Sci Rep; 2016 Jun; 6():25697. PubMed ID: 27278823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs.
    Verheyen J; Stoks R
    J Anim Ecol; 2019 Apr; 88(4):624-636. PubMed ID: 30637722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude.
    Rubalcaba JG; Olalla-Tárraga MÁ
    J Anim Ecol; 2020 May; 89(5):1277-1285. PubMed ID: 31990044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.
    Gunderson AR; Stillman JH
    Proc Biol Sci; 2015 Jun; 282(1808):20150401. PubMed ID: 25994676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.
    García-Robledo C; Kuprewicz EK; Staines CL; Erwin TL; Kress WJ
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):680-5. PubMed ID: 26729867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts.
    Bonebrake TC; Boggs CL; Stamberger JA; Deutsch CA; Ehrlich PR
    Proc Biol Sci; 2014 Oct; 281(1793):. PubMed ID: 25165769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.
    Bonebrake TC; Mastrandrea MD
    Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12581-6. PubMed ID: 20616038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.