These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

955 related articles for article (PubMed ID: 18458348)

  • 41. Thermal tolerance patterns across latitude and elevation.
    Sunday J; Bennett JM; Calosi P; Clusella-Trullas S; Gravel S; Hargreaves AL; Leiva FP; Verberk WCEP; Olalla-Tárraga MÁ; Morales-Castilla I
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20190036. PubMed ID: 31203755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Response to thermal and hydric regimes point to differential inter- and intraspecific vulnerability of tropical amphibians to climate warming.
    Delgado-Suazo P; Burrowes PA
    J Therm Biol; 2022 Jan; 103():103148. PubMed ID: 35027199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Global warming generates predictable extinctions of warm- and cold-water marine benthic invertebrates via thermal habitat loss.
    Reddin CJ; Aberhan M; Raja NB; Kocsis ÁT
    Glob Chang Biol; 2022 Oct; 28(19):5793-5807. PubMed ID: 35851980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Survival of climate warming through niche shifts: Evidence from frogs on tropical islands.
    Labisko J; Bunbury N; Griffiths RA; Groombridge JJ; Chong-Seng L; Bradfield KS; Streicher JW
    Glob Chang Biol; 2022 Feb; 28(4):1268-1286. PubMed ID: 34874078
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.
    Colwell RK; Brehm G; Cardelús CL; Gilman AC; Longino JT
    Science; 2008 Oct; 322(5899):258-61. PubMed ID: 18845754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants.
    Youngsteadt E; Prado SG; Keleher KJ; Kirchner M
    J Anim Ecol; 2023 Mar; 92(3):568-579. PubMed ID: 36642830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid?
    Ma G; Hoffmann AA; Ma CS
    J Therm Biol; 2021 May; 98():102936. PubMed ID: 34016358
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Male fertility thermal limits predict vulnerability to climate warming.
    van Heerwaarden B; Sgrò CM
    Nat Commun; 2021 Apr; 12(1):2214. PubMed ID: 33850157
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Upper temperature limits of tropical marine ectotherms: global warming implications.
    Nguyen KD; Morley SA; Lai CH; Clark MS; Tan KS; Bates AE; Peck LS
    PLoS One; 2011; 6(12):e29340. PubMed ID: 22242115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of tolerance variation in vulnerability forecasting of insects.
    Diamond SE; Yilmaz AR
    Curr Opin Insect Sci; 2018 Oct; 29():85-92. PubMed ID: 30551831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intraspecific variation in thermal tolerance differs between tropical and temperate fishes.
    Nati JJH; Svendsen MBS; Marras S; Killen SS; Steffensen JF; McKenzie DJ; Domenici P
    Sci Rep; 2021 Oct; 11(1):21272. PubMed ID: 34711864
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The well-temperatured biologist. (American Society of Naturalists Presidential Address).
    Kingsolver JG
    Am Nat; 2009 Dec; 174(6):755-68. PubMed ID: 19857158
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Urgent need for warming experiments in tropical forests.
    Cavaleri MA; Reed SC; Smith WK; Wood TE
    Glob Chang Biol; 2015 Jun; 21(6):2111-21. PubMed ID: 25641092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Beyond the Mean: Biological Impacts of Cryptic Temperature Change.
    Sheldon KS; Dillon ME
    Integr Comp Biol; 2016 Jul; 56(1):110-9. PubMed ID: 27081192
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High elevation insect communities face shifting ecological and evolutionary landscapes.
    Shah AA; Dillon ME; Hotaling S; Woods HA
    Curr Opin Insect Sci; 2020 Oct; 41():1-6. PubMed ID: 32553896
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change.
    Johnson CA; Ren R; Buckley LB
    Am Nat; 2023 Dec; 202(6):753-766. PubMed ID: 38033177
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contrasting the potential effects of daytime versus nighttime warming on insects.
    Speights CJ; Harmon JP; Barton BT
    Curr Opin Insect Sci; 2017 Oct; 23():1-6. PubMed ID: 29129273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermal tolerance and climate warming sensitivity in tropical snails.
    Marshall DJ; Rezende EL; Baharuddin N; Choi F; Helmuth B
    Ecol Evol; 2015 Dec; 5(24):5905-19. PubMed ID: 26811764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation.
    Huey RB; Kearney MR; Krockenberger A; Holtum JA; Jess M; Williams SE
    Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1596):1665-79. PubMed ID: 22566674
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermal performance across levels of biological organization.
    Rezende EL; Bozinovic F
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180549. PubMed ID: 31203764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.