BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 18458373)

  • 1. Preparation and biological properties of PLLA/beta-TCP composites reinforced by chitosan fibers.
    Wang J; Qu L; Meng X; Gao J; Li H; Wen G
    Biomed Mater; 2008 Jun; 3(2):025004. PubMed ID: 18458373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of osteogenic chitosan/alginate scaffolds reinforced with silicocarnotite containing apatitic fibers.
    Karimi M; Mesgar AS; Mohammadi Z
    Biomed Mater; 2020 Aug; 15(5):055020. PubMed ID: 32438355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on the in vitro degradation properties of poly(L-lactic acid)/beta-tricalcuim phosphate (PLLA/beta-TCP) scaffold under dynamic loading.
    Kang Y; Yao Y; Yin G; Huang Z; Liao X; Xu X; Zhao G
    Med Eng Phys; 2009 Jun; 31(5):589-94. PubMed ID: 19131266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber.
    Lou T; Wang X; Song G
    Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers.
    Mohammadi Z; Mesgar AS; Rasouli-Disfani F
    J Mech Behav Biomed Mater; 2016 Aug; 61():590-599. PubMed ID: 27179144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties.
    Islam MM; Khan MA; Rahman MM
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():648-655. PubMed ID: 25686994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Manufacture and study of porous poly(l-lactic acid) (PLLA)/beta-tricalcium phosphate (beta-TCP) composite].
    Chen R; Chen H; Han J; Zhou D; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):177-80. PubMed ID: 11450528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites.
    Yamadi S; Kobayashi S
    J Mater Sci Mater Med; 2009 Jan; 20(1):67-74. PubMed ID: 18704650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of nano-fibrous PLLA scaffold reinforced with chitosan fibers.
    Wang X; Song G; Lou T; Peng W
    J Biomater Sci Polym Ed; 2009; 20(14):1995-2002. PubMed ID: 19874673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation.
    Flauder S; Sajzew R; Müller FA
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties.
    Cai X; Tong H; Shen X; Chen W; Yan J; Hu J
    Acta Biomater; 2009 Sep; 5(7):2693-703. PubMed ID: 19359225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of PLLA-chitosan hybrid scaffolds with improved cell compatibility.
    Jiao Y; Liu Z; Zhou C
    J Biomed Mater Res A; 2007 Mar; 80(4):820-5. PubMed ID: 17058212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering.
    Liu D; Zhuang J; Shuai C; Peng S
    Biofabrication; 2013 Jun; 5(2):025005. PubMed ID: 23458914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles.
    Hong Z; Reis RL; Mano JF
    Acta Biomater; 2008 Sep; 4(5):1297-306. PubMed ID: 18439885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering.
    Shavandi A; Bekhit Ael-D; Ali MA; Sun Z
    Int J Biol Macromol; 2015 Sep; 80():445-54. PubMed ID: 26187191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering.
    Xu HH; Quinn JB; Takagi S; Chow LC
    Biomaterials; 2004 Mar; 25(6):1029-37. PubMed ID: 14615168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of chitosan/beta-tricalcium phosphate microspheres as a constituent to PMMA cement.
    Lin LC; Chang SJ; Kuo SM; Chen SF; Kuo CH
    J Mater Sci Mater Med; 2005 Jun; 16(6):567-74. PubMed ID: 15928873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.