BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18458394)

  • 41. Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes.
    Alam I; Asahina I; Ohmamiuda K; Enomoto S
    J Biomed Mater Res; 2001 Jan; 54(1):129-38. PubMed ID: 11077412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model.
    Walsh WR; Vizesi F; Michael D; Auld J; Langdown A; Oliver R; Yu Y; Irie H; Bruce W
    Biomaterials; 2008 Jan; 29(3):266-71. PubMed ID: 18029011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics.
    Ito A; Ojima K; Naito H; Ichinose N; Tateishi T
    J Biomed Mater Res; 2000 May; 50(2):178-83. PubMed ID: 10679682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of zinc release from bioactive sol-gel derived SiO(2)-CaO-ZnO glasses and ceramics.
    Jaroch DB; Clupper DC
    J Biomed Mater Res A; 2007 Sep; 82(3):575-88. PubMed ID: 17315234
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics.
    Radin SR; Ducheyne P
    J Biomed Mater Res; 1994 Nov; 28(11):1303-9. PubMed ID: 7829560
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Macroporous calcium phosphate glass-ceramic prepared by two-step pressing technique and using sucrose as a pore former.
    Wang C; Kasuga T; Nogami M
    J Mater Sci Mater Med; 2005 Aug; 16(8):739-44. PubMed ID: 15965744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioactivity and osseointegration study of calcium phosphate ceramic of different chemical composition.
    Manjubala I; Sivakumar M; Sureshkumar RV; Sastry TP
    J Biomed Mater Res; 2002; 63(2):200-8. PubMed ID: 11870654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formation of a FGF-2 and calcium phosphate composite layer on a hydroxyapatite ceramic for promoting bone formation.
    Sogo Y; Ito A; Onoguchi M; Oyane A; Tsurushima H; Ichinose N
    Biomed Mater; 2007 Sep; 2(3):S175-80. PubMed ID: 18458464
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation of nanosized beta-tricalcium phosphate particles with Zn substitution.
    Zou C; Weng W; Cheng K; Du P; Shen G; Han G
    J Mater Sci Mater Med; 2008 Mar; 19(3):1133-6. PubMed ID: 17701318
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study.
    Kasten P; Beyen I; Niemeyer P; Luginbühl R; Bohner M; Richter W
    Acta Biomater; 2008 Nov; 4(6):1904-15. PubMed ID: 18571999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Micro-particles of bioceramics could cause cell and tissue damage].
    Lu J; Tang T; Ding H; Dai K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):85-9. PubMed ID: 16532817
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions.
    Gbureck U; Vorndran E; Barralet JE
    Acta Biomater; 2008 Sep; 4(5):1480-6. PubMed ID: 18485844
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.
    Dietze S; Bayerlein T; Proff P; Hoffmann A; Gedrange T
    Folia Morphol (Warsz); 2006 Feb; 65(1):63-5. PubMed ID: 16783740
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strontium Substituted β-Tricalcium Phosphate Ceramics: Physiochemical Properties and Cytocompatibility.
    Fadeeva IV; Deyneko DV; Forysenkova AA; Morozov VA; Akhmedova SA; Kirsanova VA; Sviridova IK; Sergeeva NS; Rodionov SA; Udyanskaya IL; Antoniac IV; Rau JV
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior.
    Gallo M; Le Gars Santoni B; Douillard T; Zhang F; Gremillard L; Dolder S; Hofstetter W; Meille S; Bohner M; Chevalier J; Tadier S
    Acta Biomater; 2019 Apr; 89():391-402. PubMed ID: 30831328
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mineral coatings modulate β-TCP stability and enable growth factor binding and release.
    Suárez-González D; Lee JS; Lan Levengood SK; Vanderby R; Murphy WL
    Acta Biomater; 2012 Mar; 8(3):1117-24. PubMed ID: 22154864
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid.
    Sánchez-Salcedo S; Balas F; Izquierdo-Barba I; Vallet-Regí M
    Acta Biomater; 2009 Sep; 5(7):2738-51. PubMed ID: 19394904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment.
    Duan R; Barbieri D; Luo X; Weng J; de Bruijn JD; Yuan H
    J Orthop Res; 2016 Nov; 34(11):1865-1873. PubMed ID: 26896645
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro release of azidothymidine (AZT) by ceramic drug delivery systems.
    Benghuzzi HA; Barbaro RM; Bajpai PK
    Biomed Sci Instrum; 1990; 26():151-6. PubMed ID: 2334759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.
    Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL
    Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.