BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 18458394)

  • 61. Developing better artificial bones.
    Flinn ED
    Aerosp Am; 2003 Jan; 41(1):20-1. PubMed ID: 12524712
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preparation and physical properties of tricalcium phosphate laminates for bone-tissue engineering.
    Tanimoto Y; Nishiyama N
    J Biomed Mater Res A; 2008 May; 85(2):427-33. PubMed ID: 17701974
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of temperature on crystallinity of carbonate apatite foam prepared from alpha-tricalcium phosphate by hydrothermal treatment.
    Takeuchi A; Munar ML; Wakae H; Maruta M; Matsuya S; Tsuru K; Ishikawa K
    Biomed Mater Eng; 2009; 19(2-3):205-11. PubMed ID: 19581715
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The in vivo osteogenesis of Mg or Zr-modified silicate-based bioceramic spheres.
    Luo T; Wu C; Zhang Y
    J Biomed Mater Res A; 2012 Sep; 100(9):2269-77. PubMed ID: 22499392
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Silicon-substituted calcium phosphates - a critical view.
    Bohner M
    Biomaterials; 2009 Nov; 30(32):6403-6. PubMed ID: 19695699
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Osteoclast resorption of beta-tricalcium phosphate controlled by surface architecture.
    Davison NL; ten Harkel B; Schoenmaker T; Luo X; Yuan H; Everts V; Barrère-de Groot F; de Bruijn JD
    Biomaterials; 2014 Aug; 35(26):7441-51. PubMed ID: 24927681
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Multimodal analysis of in vivo resorbable CaP bone substitutes by combining histology, SEM, and microcomputed tomography data.
    Sweedy A; Bohner M; Baroud G
    J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1567-1577. PubMed ID: 28766903
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterization and properties of novel gallium-doped calcium phosphate ceramics.
    Mellier C; Fayon F; Schnitzler V; Deniard P; Allix M; Quillard S; Massiot D; Bouler JM; Bujoli B; Janvier P
    Inorg Chem; 2011 Sep; 50(17):8252-60. PubMed ID: 21793526
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In vitro studies of human and rat osteoclast activity on hydroxyapatite, beta-tricalcium phosphate, calcium carbonate.
    Monchau F; Lefèvre A; Descamps M; Belquin-myrdycz A; Laffargue P; Hildebrand HF
    Biomol Eng; 2002 Aug; 19(2-6):143-52. PubMed ID: 12202175
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Continuous delivery of azidothymidine by hydroxyapatite or tricalcium phosphate ceramics.
    Cannon MR; Bajpai PK
    Biomed Sci Instrum; 1995; 31():159-64. PubMed ID: 7654955
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of PEG amount in amorphous calcium phosphate on its crystallized products.
    Liu S; Weng W; Li Z; Pan L; Cheng K; Song C; Du P; Shen G; Han G
    J Mater Sci Mater Med; 2009 Jan; 20(1):359-63. PubMed ID: 18807264
    [TBL] [Abstract][Full Text] [Related]  

  • 72. beta-TCP/MCPM-based premixed calcium phosphate cements.
    Han B; Ma PW; Zhang LL; Yin YJ; Yao KD; Zhang FJ; Zhang YD; Li XL; Nie W
    Acta Biomater; 2009 Oct; 5(8):3165-77. PubMed ID: 19427931
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Antibacterial and cell-friendly copper-substituted tricalcium phosphate ceramics for biomedical implant applications.
    Fadeeva IV; Lazoryak BI; Davidova GA; Murzakhanov FF; Gabbasov BF; Petrakova NV; Fosca M; Barinov SM; Vadalà G; Uskoković V; Zheng Y; Rau JV
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112410. PubMed ID: 34579919
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate.
    Mastrogiacomo M; Corsi A; Francioso E; Di Comite M; Monetti F; Scaglione S; Favia A; Crovace A; Bianco P; Cancedda R
    Tissue Eng; 2006 May; 12(5):1261-73. PubMed ID: 16771639
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of the sintering atmosphere on the physico-chemical properties and the osteoclastic resorption of β-tricalcium phosphate cylinders.
    Le Gars Santoni B; Niggli L; Dolder S; Loeffel O; Sblendorio GA; Maazouz Y; Alexander DTL; Heuberger R; Stähli C; Döbelin N; Bowen P; Hofstetter W; Bohner M
    Acta Biomater; 2023 Oct; 169():566-578. PubMed ID: 37595772
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Beta tricalcium phosphate ceramics with controlled crystal orientation fabricated by application of external magnetic field during the slip casting process.
    Hagio T; Yamauchi K; Kohama T; Matsuzaki T; Iwai K
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2967-70. PubMed ID: 23623120
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate.
    Liu G; Zhao L; Cui L; Liu W; Cao Y
    Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In vivo testing of nanoparticle-treated TTCP/DCPA-based ceramic surfaces.
    Chen WC; Ju CP; Tien YC; Lin JH
    Acta Biomater; 2009 Jun; 5(5):1767-74. PubMed ID: 19144582
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions: influence of seed species and proteins.
    Rohanizadeh R; Padrines M; Bouler JM; Couchourel D; Fortun Y; Daculsi G
    J Biomed Mater Res; 1998 Dec; 42(4):530-9. PubMed ID: 9827676
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Protective effect of zinc supplementation on tricalcium phosphate particles-induced inflammatory osteolysis in mice.
    Yang P; Zhang T; Zhu R; Shen Y; Pan Y; Zhang Y
    Microsc Res Tech; 2022 Nov; 85(11):3608-3617. PubMed ID: 35876446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.