BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1175 related articles for article (PubMed ID: 18458404)

  • 1. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL
    J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    Biomed Mater; 2008 Jun; 3(2):025005. PubMed ID: 18458369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering.
    Teixeira S; Fernandes H; Leusink A; van Blitterswijk C; Ferraz MP; Monteiro FJ; de Boer J
    J Biomed Mater Res A; 2010 May; 93(2):567-75. PubMed ID: 19591232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering.
    Deville S; Saiz E; Tomsia AP
    Biomaterials; 2006 Nov; 27(32):5480-9. PubMed ID: 16857254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA; Lee SH; Kim WD
    Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioglass-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro.
    Chen QZ; Efthymiou A; Salih V; Boccaccini AR
    J Biomed Mater Res A; 2008 Mar; 84(4):1049-60. PubMed ID: 17685403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of hyaluronic acid-based scaffolds for brain tissue engineering.
    Wang TW; Spector M
    Acta Biomater; 2009 Sep; 5(7):2371-84. PubMed ID: 19403351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dipping and electrospraying for the preparation of hydroxyapatite foams for bone tissue engineering.
    Muthutantri AI; Huang J; Edirisinghe MJ; Bretcanu O; Boccaccini AR
    Biomed Mater; 2008 Jun; 3(2):025009. PubMed ID: 18458366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioresorbable composites prepared by supercritical fluid foaming.
    Mathieu LM; Montjovent MO; Bourban PE; Pioletti DP; Månson JA
    J Biomed Mater Res A; 2005 Oct; 75(1):89-97. PubMed ID: 16037939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of hydroxyapatite/mica composite.
    Nordström EG; Herø H; Jørgensen RB
    Biomed Mater Eng; 1994; 4(4):309-15. PubMed ID: 7950878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion.
    Elbadawi M; Shbeh M
    J Mech Behav Biomed Mater; 2018 Jan; 77():422-433. PubMed ID: 29024894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.