These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 18458415)

  • 1. MEMS capacitive force sensors for cellular and flight biomechanics.
    Sun Y; Nelson BJ
    Biomed Mater; 2007 Mar; 2(1):S16-22. PubMed ID: 18458415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process.
    Snyder GJ; Lim JR; Huang CK; Fleurial JP
    Nat Mater; 2003 Aug; 2(8):528-31. PubMed ID: 12883550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro- and nanomechanical sensors for environmental, chemical, and biological detection.
    Waggoner PS; Craighead HG
    Lab Chip; 2007 Oct; 7(10):1238-55. PubMed ID: 17896006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced optical tweezers for the study of cellular and molecular biomechanics.
    Brouhard GJ; Schek HT; Hunt AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):121-5. PubMed ID: 12617534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cantilever-based chemical sensors for detecting catalytically produced reactions and motility forces generated via electrokinetic phenomena.
    Subramanian S; Catchmark JM
    Small; 2007 Nov; 3(11):1934-40. PubMed ID: 17943715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectromechanical systems (NEMS).
    Ekinci KL
    Small; 2005 Aug; 1(8-9):786-97. PubMed ID: 17193524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of biomedical sterilization processes on performance characteristics of MEMS pressure sensors.
    Ferrara LA; Fleischman AJ; Dunning JL; Zorman CA; Roy S
    Biomed Microdevices; 2007 Dec; 9(6):809-14. PubMed ID: 17530408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model study of capacitive micromachined ultrasonic transducers fabricated using atomic layer deposition process.
    Liu LL; Mukdadi OM; Hertzberg JR; Shandas R
    Biomed Sci Instrum; 2004; 40():142-8. PubMed ID: 15133949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer.
    Siqueira JR; Abouzar MH; Poghossian A; Zucolotto V; Oliveira ON; Schöning MJ
    Biosens Bioelectron; 2009 Oct; 25(2):497-501. PubMed ID: 19651505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A technique for conditioning and calibrating force-sensing resistors for repeatable and reliable measurement of compressive force.
    Hall RS; Desmoulin GT; Milner TE
    J Biomech; 2008 Dec; 41(16):3492-5. PubMed ID: 19019374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocapacitive circuit elements.
    Zareie HM; Morgan SW; Moghaddam M; Maaroof AI; Cortie MB; Phillips MR
    ACS Nano; 2008 Aug; 2(8):1615-9. PubMed ID: 19206363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantable MEMS compressive stress sensors: Design, fabrication and calibration with application to the disc annulus.
    Glos DL; Sauser FE; Papautsky I; Bylski-Austrow DI
    J Biomech; 2010 Aug; 43(11):2244-8. PubMed ID: 20451207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of capacitive versus resistive joint contact stress sensors.
    Martinelli L; Hurschler C; Rosenbaum D
    Clin Orthop Relat Res; 2006 Jun; 447():214-20. PubMed ID: 16672899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-opto-mechanical characterization of neuron membrane mechanics under cellular growth and differentiation.
    Gopal A; Luo Z; Lee JY; Kumar K; Li B; Hoshino K; Schmidt C; Ho PS; Zhang X
    Biomed Microdevices; 2008 Oct; 10(5):611-22. PubMed ID: 18483864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major new thrust for MEMS engines.
    Wilson JR
    Aerosp Am; 2003 Feb; 41(2):34-8. PubMed ID: 12569916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanowire mechanical switch with a built-in diode.
    Han JW; Ahn JH; Kim MW; Lee JO; Yoon JB; Choi YK
    Small; 2010 Jun; 6(11):1197-200. PubMed ID: 20461728
    [No Abstract]   [Full Text] [Related]  

  • 17. Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers.
    Tadayon MA; Ashkenazi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):2021-30. PubMed ID: 24658733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-domain control of ultrahigh-frequency nanomechanical systems.
    Liu N; Giesen F; Belov M; Losby J; Moroz J; Fraser AE; McKinnon G; Clement TJ; Sauer V; Hiebert WK; Freeman MR
    Nat Nanotechnol; 2008 Dec; 3(12):715-9. PubMed ID: 19057589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator.
    Feng XL; White CJ; Hajimiri A; Roukes ML
    Nat Nanotechnol; 2008 Jun; 3(6):342-6. PubMed ID: 18654544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacitive micromachined ultrasonic transducers (CMUTs) with isolation posts.
    Huang Y; Zhuang X; Haeggstrom EO; Ergun AS; Cheng CH; Khuri-Yakub BT
    Ultrasonics; 2008 Mar; 48(1):74-81. PubMed ID: 18207212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.