BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18458433)

  • 1. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering.
    Anil Kumar PR; Varma HK; Kumary TV
    Biomed Mater; 2007 Mar; 2(1):48-54. PubMed ID: 18458433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.
    Shimizu K; Ito A; Honda H
    J Biosci Bioeng; 2007 Sep; 104(3):171-7. PubMed ID: 17964479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
    Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL
    Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.
    Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH
    Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds.
    Mygind T; Stiehler M; Baatrup A; Li H; Zou X; Flyvbjerg A; Kassem M; Bünger C
    Biomaterials; 2007 Feb; 28(6):1036-47. PubMed ID: 17081601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel route in bone tissue engineering: magnetic biomimetic scaffolds.
    Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V
    Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation.
    Lode A; Bernhardt A; Gelinsky M
    J Tissue Eng Regen Med; 2008 Oct; 2(7):400-7. PubMed ID: 18756590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V; Kaplan D
    Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and complete cellularization of hydroxyapatite for bone tissue engineering.
    Anil Kumar PR; Varma HK; Kumary TV
    Acta Biomater; 2005 Sep; 1(5):545-52. PubMed ID: 16701834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds.
    Dar A; Shachar M; Leor J; Cohen S
    Biotechnol Bioeng; 2002 Nov; 80(3):305-12. PubMed ID: 12226863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds.
    Michna S; Wu W; Lewis JA
    Biomaterials; 2005 Oct; 26(28):5632-9. PubMed ID: 15878368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials.
    Unger RE; Sartoris A; Peters K; Motta A; Migliaresi C; Kunkel M; Bulnheim U; Rychly J; Kirkpatrick CJ
    Biomaterials; 2007 Sep; 28(27):3965-76. PubMed ID: 17582491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and evaluation of porous poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) hydroxyapatite composite scaffolds.
    Jing Xi ; Ling Zhang ; Zhenhu An Zheng ; Guoqiang Chen ; Yandao Gong ; Nanming Zhao ; Xiufang Zhang
    J Biomater Appl; 2008 Jan; 22(4):293-307. PubMed ID: 18089673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative in vitro study of the proliferation and growth of human osteoblast-like cells on various biomaterials.
    Itthichaisri C; Wiedmann-Al-Ahmad M; Huebner U; Al-Ahmad A; Schoen R; Schmelzeisen R; Gellrich NC
    J Biomed Mater Res A; 2007 Sep; 82(4):777-87. PubMed ID: 17326141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes.
    Mandal BB; Kundu SC
    Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts.
    Sakamoto M; Nakasu M; Matsumoto T; Okihana H
    J Biomed Mater Res A; 2007 Jul; 82(1):238-42. PubMed ID: 17295224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation.
    Haimi S; Gorianc G; Moimas L; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Schmid C; Miettinen S; Suuronen R
    Acta Biomater; 2009 Oct; 5(8):3122-31. PubMed ID: 19428318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering.
    Krebs MD; Sutter KA; Lin AS; Guldberg RE; Alsberg E
    Acta Biomater; 2009 Oct; 5(8):2847-59. PubMed ID: 19446056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs.
    Arrigoni C; Camozzi D; Imberti B; Mantero S; Remuzzi A
    Biomaterials; 2006 Feb; 27(4):623-30. PubMed ID: 16048730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.