These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 18458433)
1. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering. Anil Kumar PR; Varma HK; Kumary TV Biomed Mater; 2007 Mar; 2(1):48-54. PubMed ID: 18458433 [TBL] [Abstract][Full Text] [Related]
2. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering. Shimizu K; Ito A; Honda H J Biosci Bioeng; 2007 Sep; 104(3):171-7. PubMed ID: 17964479 [TBL] [Abstract][Full Text] [Related]
3. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [TBL] [Abstract][Full Text] [Related]
4. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371 [TBL] [Abstract][Full Text] [Related]
5. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Mygind T; Stiehler M; Baatrup A; Li H; Zou X; Flyvbjerg A; Kassem M; Bünger C Biomaterials; 2007 Feb; 28(6):1036-47. PubMed ID: 17081601 [TBL] [Abstract][Full Text] [Related]
6. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946 [TBL] [Abstract][Full Text] [Related]
7. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation. Lode A; Bernhardt A; Gelinsky M J Tissue Eng Regen Med; 2008 Oct; 2(7):400-7. PubMed ID: 18756590 [TBL] [Abstract][Full Text] [Related]
8. Porosity of 3D biomaterial scaffolds and osteogenesis. Karageorgiou V; Kaplan D Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204 [TBL] [Abstract][Full Text] [Related]
9. Rapid and complete cellularization of hydroxyapatite for bone tissue engineering. Anil Kumar PR; Varma HK; Kumary TV Acta Biomater; 2005 Sep; 1(5):545-52. PubMed ID: 16701834 [TBL] [Abstract][Full Text] [Related]
10. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Dar A; Shachar M; Leor J; Cohen S Biotechnol Bioeng; 2002 Nov; 80(3):305-12. PubMed ID: 12226863 [TBL] [Abstract][Full Text] [Related]
11. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Michna S; Wu W; Lewis JA Biomaterials; 2005 Oct; 26(28):5632-9. PubMed ID: 15878368 [TBL] [Abstract][Full Text] [Related]
12. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Unger RE; Sartoris A; Peters K; Motta A; Migliaresi C; Kunkel M; Bulnheim U; Rychly J; Kirkpatrick CJ Biomaterials; 2007 Sep; 28(27):3965-76. PubMed ID: 17582491 [TBL] [Abstract][Full Text] [Related]
13. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension. Namba RM; Cole AA; Bjugstad KB; Mahoney MJ Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891 [TBL] [Abstract][Full Text] [Related]
14. Preparation and evaluation of porous poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) hydroxyapatite composite scaffolds. Jing Xi ; Ling Zhang ; Zhenhu An Zheng ; Guoqiang Chen ; Yandao Gong ; Nanming Zhao ; Xiufang Zhang J Biomater Appl; 2008 Jan; 22(4):293-307. PubMed ID: 18089673 [TBL] [Abstract][Full Text] [Related]
15. Comparative in vitro study of the proliferation and growth of human osteoblast-like cells on various biomaterials. Itthichaisri C; Wiedmann-Al-Ahmad M; Huebner U; Al-Ahmad A; Schoen R; Schmelzeisen R; Gellrich NC J Biomed Mater Res A; 2007 Sep; 82(4):777-87. PubMed ID: 17326141 [TBL] [Abstract][Full Text] [Related]
16. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Mandal BB; Kundu SC Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621 [TBL] [Abstract][Full Text] [Related]
17. Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. Sakamoto M; Nakasu M; Matsumoto T; Okihana H J Biomed Mater Res A; 2007 Jul; 82(1):238-42. PubMed ID: 17295224 [TBL] [Abstract][Full Text] [Related]
18. Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Haimi S; Gorianc G; Moimas L; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Schmid C; Miettinen S; Suuronen R Acta Biomater; 2009 Oct; 5(8):3122-31. PubMed ID: 19428318 [TBL] [Abstract][Full Text] [Related]
19. Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering. Krebs MD; Sutter KA; Lin AS; Guldberg RE; Alsberg E Acta Biomater; 2009 Oct; 5(8):2847-59. PubMed ID: 19446056 [TBL] [Abstract][Full Text] [Related]
20. The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs. Arrigoni C; Camozzi D; Imberti B; Mantero S; Remuzzi A Biomaterials; 2006 Feb; 27(4):623-30. PubMed ID: 16048730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]