These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 18458433)
41. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Wang F; Li Z; Lannutti JL; Wagner WR; Guan J Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136 [TBL] [Abstract][Full Text] [Related]
42. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells. Heinemann C; Heinemann S; Lode A; Bernhardt A; Worch H; Hanke T Biomacromolecules; 2009 May; 10(5):1305-10. PubMed ID: 19344120 [TBL] [Abstract][Full Text] [Related]
43. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270 [TBL] [Abstract][Full Text] [Related]
44. In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction. Olivier V; Hivart P; Descamps M; Hardouin P Biomed Mater; 2007 Sep; 2(3):174-80. PubMed ID: 18458469 [TBL] [Abstract][Full Text] [Related]
45. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
46. Collagen biomaterial doped with colominic acid for cell culture applications with regard to peripheral nerve repair. Bruns S; Stark Y; Röker S; Wieland M; Dräger G; Kirschning A; Stahl F; Kasper C; Scheper T J Biotechnol; 2007 Sep; 131(3):335-45. PubMed ID: 17714819 [TBL] [Abstract][Full Text] [Related]
47. Comparison of osteoconductive materials on MG63 osteoblast cell function. Barron M; Franklin L; Woodall J; Wingerter S; Benghuzzi H; Tucci M Biomed Sci Instrum; 2007; 43():248-53. PubMed ID: 17487089 [TBL] [Abstract][Full Text] [Related]
48. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Li Y; Xiong J; Wong CS; Hodgson PD; Wen C Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266 [TBL] [Abstract][Full Text] [Related]
49. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824 [TBL] [Abstract][Full Text] [Related]
50. Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction. Tan Q; Hillinger S; van Blitterswijk CA; Weder W Interact Cardiovasc Thorac Surg; 2009 Jan; 8(1):27-30. PubMed ID: 18550604 [TBL] [Abstract][Full Text] [Related]
51. Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Montufar EB; Traykova T; Gil C; Harr I; Almirall A; Aguirre A; Engel E; Planell JA; Ginebra MP Acta Biomater; 2010 Mar; 6(3):876-85. PubMed ID: 19835998 [TBL] [Abstract][Full Text] [Related]
52. Static versus vacuum cell seeding on high and low porosity ceramic scaffolds. Buizer AT; Veldhuizen AG; Bulstra SK; Kuijer R J Biomater Appl; 2014 Jul; 29(1):3-13. PubMed ID: 24327348 [TBL] [Abstract][Full Text] [Related]
53. The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. San Thian E; Ahmad Z; Huang J; Edirisinghe MJ; Jayasinghe SN; Ireland DC; Brooks RA; Rushton N; Bonfield W; Best SM Biomaterials; 2008 Apr; 29(12):1833-43. PubMed ID: 18255136 [TBL] [Abstract][Full Text] [Related]
54. Interactions between endothelial cells and a poly(carbonate-silsesquioxane-bridge-urea)urethane. Punshon G; Vara DS; Sales KM; Kidane AG; Salacinski HJ; Seifalian AM Biomaterials; 2005 Nov; 26(32):6271-9. PubMed ID: 15913770 [TBL] [Abstract][Full Text] [Related]
55. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Erisken C; Kalyon DM; Wang H Biomaterials; 2008 Oct; 29(30):4065-73. PubMed ID: 18649939 [TBL] [Abstract][Full Text] [Related]
56. [Preparation of CPC for tissue engineering artificial rib and a study on proliferation and adhesion of BMSCs on CPC]. Tang H; Xu Z; Liu C; Qin X; Wu B; Wu L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Oct; 22(10):1238-41. PubMed ID: 18979886 [TBL] [Abstract][Full Text] [Related]
57. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy. Rosa AL; Crippa GE; de Oliveira PT; Taba M; Lefebvre LP; Beloti MM Clin Oral Implants Res; 2009 May; 20(5):472-81. PubMed ID: 19250245 [TBL] [Abstract][Full Text] [Related]
58. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Kasten P; Beyen I; Niemeyer P; Luginbühl R; Bohner M; Richter W Acta Biomater; 2008 Nov; 4(6):1904-15. PubMed ID: 18571999 [TBL] [Abstract][Full Text] [Related]
59. Tissue engineering scaffolds for the regeneration of craniofacial bone. Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334 [TBL] [Abstract][Full Text] [Related]
60. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]