These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 18458433)
61. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927 [TBL] [Abstract][Full Text] [Related]
62. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Katti KS; Katti DR; Dash R Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898 [TBL] [Abstract][Full Text] [Related]
63. Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds. Ozturk N; Girotti A; Kose GT; Rodríguez-Cabello JC; Hasirci V Biomaterials; 2009 Oct; 30(29):5417-26. PubMed ID: 19595451 [TBL] [Abstract][Full Text] [Related]
64. Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Sengers BG; Taylor M; Please CP; Oreffo RO Biomaterials; 2007 Apr; 28(10):1926-40. PubMed ID: 17178156 [TBL] [Abstract][Full Text] [Related]
65. Novel apatite fiber scaffolds can promote three-dimensional proliferation of osteoblasts in rodent bone regeneration models. Morisue H; Matsumoto M; Chiba K; Matsumoto H; Toyama Y; Aizawa M; Kanzawa N; Fujimi TJ; Uchida H; Okada I J Biomed Mater Res A; 2009 Sep; 90(3):811-8. PubMed ID: 18615469 [TBL] [Abstract][Full Text] [Related]
66. A new class of bioactive and biodegradable soybean-based bone fillers. Santin M; Morris C; Standen G; Nicolais L; Ambrosio L Biomacromolecules; 2007 Sep; 8(9):2706-11. PubMed ID: 17655355 [TBL] [Abstract][Full Text] [Related]
67. On scaffold designing for bone regeneration: A computational multiscale approach. Sanz-Herrera JA; García-Aznar JM; Doblaré M Acta Biomater; 2009 Jan; 5(1):219-29. PubMed ID: 18725187 [TBL] [Abstract][Full Text] [Related]
68. Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. Doraiswamy A; Narayan RJ; Harris ML; Qadri SB; Modi R; Chrisey DB J Biomed Mater Res A; 2007 Mar; 80(3):635-43. PubMed ID: 17051538 [TBL] [Abstract][Full Text] [Related]
69. Modularly assembled porous cell-laden hydrogels. Liu B; Liu Y; Lewis AK; Shen W Biomaterials; 2010 Jun; 31(18):4918-25. PubMed ID: 20338634 [TBL] [Abstract][Full Text] [Related]
70. The impact of critical point drying with liquid carbon dioxide on collagen-hydroxyapatite composite scaffolds. Sachlos E; Wahl DA; Triffitt JT; Czernuszka JT Acta Biomater; 2008 Sep; 4(5):1322-31. PubMed ID: 18440886 [TBL] [Abstract][Full Text] [Related]
71. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210 [TBL] [Abstract][Full Text] [Related]
72. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Adachi T; Osako Y; Tanaka M; Hojo M; Hollister SJ Biomaterials; 2006 Jul; 27(21):3964-72. PubMed ID: 16584771 [TBL] [Abstract][Full Text] [Related]
73. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Gupta D; Venugopal J; Mitra S; Giri Dev VR; Ramakrishna S Biomaterials; 2009 Apr; 30(11):2085-94. PubMed ID: 19167752 [TBL] [Abstract][Full Text] [Related]
74. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Smith IO; McCabe LR; Baumann MJ Int J Nanomedicine; 2006; 1(2):189-94. PubMed ID: 17722535 [TBL] [Abstract][Full Text] [Related]
76. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Park JW; Kim YJ; Park CH; Lee DH; Ko YG; Jang JH; Lee CS Acta Biomater; 2009 Oct; 5(8):3272-80. PubMed ID: 19426841 [TBL] [Abstract][Full Text] [Related]
77. Guiding bone formation in a critical-sized defect and assessments. Jannetty J; Kolb E; Boxberger J; Deslauriers R; Ganey T J Craniofac Surg; 2010 Nov; 21(6):1848-54. PubMed ID: 21119438 [TBL] [Abstract][Full Text] [Related]
78. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250 [TBL] [Abstract][Full Text] [Related]
79. Effect of seeding technique and scaffold material on bone formation in tissue-engineered constructs. Schliephake H; Zghoul N; Jäger V; van Griensven M; Zeichen J; Gelinsky M; Wülfing T J Biomed Mater Res A; 2009 Aug; 90(2):429-37. PubMed ID: 18523951 [TBL] [Abstract][Full Text] [Related]
80. [Study on nano-hydroxyapatite/type I collagen artificial bone scaffold structure and osteogenic ability in vivo]. Xu J; Zhu L; Wang H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):567-70. PubMed ID: 18693432 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]